

Deep Learning
Generalization

This book provides a comprehensive exploration of generalization in deep learning,
focusing on both theoretical foundations and practical strategies. It delves deeply into
how machine learning models, particularly deep neural networks, achieve robust per-
formance on unseen data. Key topics include balancing model complexity, addressing
overfitting and underfitting, and understanding modern phenomena such as the double
descent curve and implicit regularization.

The book offers a holistic perspective by addressing the four critical components of model
training: data, model architecture, objective functions, and optimization processes. It
combines mathematical rigor with hands-on guidance, introducing practical imple-
mentation techniques using PyTorch to bridge the gap between theory and real-world
applications. For instance, the book highlights how regularized deep learning models
not only achieve better predictive performance but also assume a more compact and
efficient parameter space. Structured to accommodate a progressive learning curve, the
content spans foundational concepts like statistical learning theory to advanced topics
like Neural Tangent Kernels and overparameterization paradoxes.

By synthesizing classical and modern views of generalization, the book equips readers to
develop a nuanced understanding of key concepts while mastering practical applications.

For academics, the book serves as a definitive resource to solidify theoretical knowl-
edge and explore cutting-edge research directions. For industry professionals, it pro-
vides actionable insights to enhance model performance systematically. Whether you’re
a beginner seeking foundational understanding or a practitioner exploring advanced
methodologies, this book offers an indispensable guide to achieving robust generaliza-
tion in deep learning.

Liu Peng is currently an Assistant Professor of Quantitative Finance at the Singapore
Management University (SMU). His research interests include generalization in deep
learning, sparse estimation, and Bayesian optimization.

http://taylorandfrancis.com

Deep Learning
Generalization

Theoretical Foundations and Practical
Strategies

Liu Peng

https://www.crcpress.com

First edition published 2026
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2026 Liu Peng

First edition published by Routledge 2025

Reasonable efforts have been made to publish reliable data and information, but the author and pub-
lisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.
com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermis-
sions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

ISBN: 978-1-032-84190-8 (hbk)
ISBN: 978-1-032-84189-2 (pbk)
ISBN: 978-1-003-51160-1 (ebk)

DOI: 10.1201/9781003511601

Typeset in CMR10
by KnowledgeWorks Global Ltd.

https://www.copyright.com
https://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003511601

For my wife Zheng and children Jiaxin, Jiaran, and Jiayu.

http://taylorandfrancis.com

Contents

1 Unveiling Generalization in Deep Learning 1
1.1 Introducing Generalization 4
1.2 The Curse of Dimensionality 8
1.3 More on Underfitting and Overfitting 10
1.4 Understanding Bias-Variance Trade-off 12
1.5 More on the Model Training Path 16
1.6 Understanding the Model Training Process 22
1.7 An Overview of Different Regularization Techniques 24
1.8 Toward Model Generalization via Hyperparameter Tuning . 25
1.9 Summary . 26

2 Introduction to Statistical Learning Theory 29
2.1 Introducing Generalization 31

2.1.1 Revisiting underfitting and overfitting 32
2.1.2 Revisiting bias-variance tradeoff 33

2.2 Statistical Learning Theory 34
2.2.1 A probabilistic framework 35
2.2.2 Loss functions in supervised learning 37
2.2.3 Consistency in STL 39
2.2.4 Estimation–approximation trade-off 41
2.2.5 Empirical risk minimization 46
2.2.6 Uniform convergence 48

2.3 Capacity Measures of Functional Class 51
2.3.1 Union bound for finite function classes 52
2.3.2 Extending beyond finite function classes 53
2.3.3 Shattering coefficient 55
2.3.4 Different function classes 58
2.3.5 Generalization bounds 61
2.3.6 VC dimension . 63
2.3.7 Rademacher complexity 65
2.3.8 Other generalization bounds and capacity concepts . . 67

2.4 Summary . 68

vii

viii Contents

3 Classical Perspectives on Generalization 70
3.1 The Goal of Machine-Learning Models 70

3.1.1 Revisiting the model training workflow 72
3.2 The Data . 73

3.2.1 Sampling from the underlying data distribution 75
3.2.2 The train-test split . 78
3.2.3 Selection bias and cross-validation 79

3.3 The Model . 81
3.3.1 Parametric versus non-parametric models 83
3.3.2 The bias trick . 83

3.4 The Cost Function . 85
3.5 The Optimization Algorithm 88

3.5.1 Multiple minima and convexity 89
3.5.2 The gradient descent algorithm 92
3.5.3 Different types of gradient descent 99
3.5.4 The stochastic gradient descent algorithm 101
3.5.5 The impact of the learning rate 102

3.6 Improving Predictive Performance 105
3.6.1 Polynomial feature engineering 106
3.6.2 Linearity in the weights 108

3.7 More on the Model . 108
3.7.1 Bias and variance decomposition 109
3.7.2 Understanding bias and variance using bootstrap . . . 111
3.7.3 Reduced generalization with high model complexity . 113
3.7.4 Observing increased variance by varying model

complexity . 114
3.8 Summary . 115

4 Modern Perspectives on Generalization 117
4.1 A Modern View on Generalization 119

4.1.1 Beyond perfect interpolation 124
4.1.2 Behind the double-descent phenomenon 126
4.1.3 Extending the double-descent phenomenon via the scal-

ing law . 128
4.1.4 A brief history of the double-descent phenomenon . . 131

4.2 Double Descent in Polynomial Regression 132
4.2.1 The smoothing spline 134
4.2.2 Rewriting the smoothing spline cost function 136
4.2.3 Deriving the closed-form solution 137
4.2.4 Implementing the smoothing spline model 140
4.2.5 Observing goodness and roughness of fit with

polynomial degrees . 145
4.2.6 Sample non-monotonicity in generalization performance 147

4.3 Summary . 149

Contents ix

5 Fundamentals of Deep Neural Networks 151
5.1 Multilayer Perceptron . 152

5.1.1 A two-layer neural network 154
5.1.2 Shallow versus deep neural networks 159

5.2 Automatic Differentiation . 162
5.2.1 Gradient-based optimization 163
5.2.2 The chain rule with partial derivatives 164
5.2.3 Different modes of multiplication 166

5.3 Training a CNN on MNIST 169
5.3.1 Downloading and loading the MNIST dataset 170
5.3.2 Defining the prediction function 174
5.3.3 Defining the cost function 179
5.3.4 Defining the optimization procedure 182
5.3.5 Updating model weights 183

5.4 More on Generalization . 186
5.4.1 Multiple global minima 191
5.4.2 Best versus worst minimum 191

5.5 Summary . 194

6 A Concluding Perspective 196
6.1 Early Theoretical Foundations 197

6.1.1 Expressivity of neural networks 197
6.1.2 Trainability and optimization landscapes 201

6.2 The Paradox of Generalization 205
6.2.1 Empirical observations of over-parameterization 205
6.2.2 Limitations of classical capacity measures 206
6.2.3 Explaining the paradox 207
6.2.4 Alternative theoretical frameworks 209

6.3 Open Questions and Future Directions 210
6.3.1 Role of data distribution 210
6.3.2 Implicit bias of optimization algorithms 211
6.3.3 Bridging theory and practice 212

6.4 Summary . 213

Bibliography 215

Index 217

http://taylorandfrancis.com

1

Unveiling Generalization in Deep Learning

Most of us strive to excel in academic exams. From a young age, we are often
encouraged to study diligently, not just for practice tests but also for the final
exam. In the realm of machine learning, this parallels the process of training a
model on a dataset where both inputs (questions) and outputs (answers) are
known, much like a set of practice exam questions with their solutions. Our
objective is to train the model on these “practice exam” data and then apply
it to unseen data, representing the final exam.

The overarching goal is to develop a robust model that not only performs
well on the training data (the practice exam) but also generalizes effectively
to the test data (the final exam). In deep learning, this entails uncovering
patterns that are not merely memorized from the training set but are broadly
applicable to new, unseen data. If the model is overfitting, memorizing the
practice exam questions without grasping the underlying concepts and pat-
terns, it can perform poorly on the final exam. In contrast, a well-generalized
model is better equipped to handle new questions (test data) confidently, re-
flecting a deeper understanding of the fundamental patterns of the data.

Depending on the model’s ability to generalize, we can encounter four
possible outcomes: good performance on both the training and test data, rep-
resenting strong generalization because the model captures underlying pat-
terns without overfitting; poor performance on both, reflecting underfitting
when the model fails to learn meaningful relationships; strong performance
on the training set yet poor performance on the test set, indicating overfitting
caused by memorizing training examples rather than understanding broader
patterns; and, in some rare cases, unexpectedly better performance on the
test data than on the training data, which can occur due to randomness or a
fortuitous alignment with the test distribution.

Figure 1.1 summarizes these results, where the lower left quadrant repre-
sents the worst-case scenario: poor results on both the training set and the test
set. Although unfortunate, this outcome is somewhat predictable: insufficient
learning from the training data is likely to result in poor generalization to
unseen test data. The key is to fully leverage the training data, which comes
with labeled answers, to develop a model that captures meaningful patterns
that can be applied to future data. If the model fails to learn adequately from
the training set, it is highly unlikely to perform well on new data.

Occasionally, we might observe good performance on the test set along-
side poor results on the training set, a situation depicted in the upper left

DOI: 10.1201/9781003511601-1 1

https://doi.org/10.1201/9781003511601-1

2 Deep Learning Generalization

FIGURE 1.1
There are four different outcomes for the practice and final exams, where the
practice exam contains question-answer pairs and the final exam only contains
the questions. This also corresponds to the four possible scenarios in model
development, where the available training data contain the input-output pairs
and the test data only contain the input data. The trained model is assessed
on both training and test data, although a more significant focus is given to
the latter.

quadrant. Although it may seem promising at first glance, this outcome is
both uncommon and often attributable to random chance rather than to a
thorough understanding of the underlying patterns. In practice, such luck
rarely translates into stable generalization and does not typically guarantee
strong performance on future tasks.

The upper right quadrant represents the ideal outcome: the model excels
in both the training set and the test set. In this scenario, the model has uncov-
ered the essential patterns in the training data and applied them successfully
to new, unseen data. Achieving this balance usually involves carefully refining
the model during training so that it neither underfits nor overfits, thereby
enabling effective generalization to future tasks. This quadrant, where per-
formance aligns well with the underlying goal of robust learning, captures
the essence of strong generalization. In fact, the model may even produce a
lower test set error and thus generalize better if it overfits the training data to
some extent, as evidenced by the double-descent phenomenon in deep neural
networks (more on this in later chapters).

Unveiling Generalization in Deep Learning 3

The lower right quadrant highlights the phenomenon of overfitting, where
the model, much like a student overly fixated on practice exam scores, has
been tuned too extensively to the training set. In this case, it memorizes
specific answers rather than internalizing the broader concepts underlying
those answers. Although the model shows strong performance on the training
data, it struggles when faced with unfamiliar questions on the test set. This
mirrors a student who relies on rote memorization for practice exam questions,
only to falter when confronted with differently phrased or more challenging
problems in the final exam.

In deep learning, overfitting arises when a model becomes overly complex
and is tuned too closely to the training set, effectively memorizing its details
rather than grasping the underlying structures. Because the final exam (test
set) inevitably differs from the training data, performance deteriorates when
broader patterns are not properly learned. In contrast, underfitting occurs
when the model is too simple to capture even the essential features in the
training set, leading to poor results on both the training and test data. Among
these two extremes, overfitting is more prevalent in deep learning, where the
pressure to optimize for immediate gains can overshadow the ultimate goal of
solid generalization. The key lesson is not to memorize the training answers,
but instead to learn the underlying patterns that can be applied to new, unseen
data.

In this context, the lower right quadrant, representing overfitting, shows
a model that excels on the training set but struggles with new unseen data.
This issue can be mitigated through regularization, a collection of strategies
— such as weight loss (L2 regularization), dropout, or early stopping — aimed
at preventing the model from simply memorizing the training set. These slight
adjustments help guide the model toward the broader underlying structures
in the data rather than focusing solely on specific examples. Thus, a properly
regularized model is more likely to generalize effectively, yielding accurate
predictions on unseen data in the test set.

Generalization stands as the foremost objective of any predictive model,
where the ability to perform effectively on unseen data becomes the paramount
concern. In deep learning, regularization is essential to mitigate overfitting,
offering a variety of methods that control the complexity of the model and
reduce the discrepancy between training and test results. Especially when
training data are scarce or model capacity is limited, these techniques become
indispensable to ensure that the model retains its ability to learn key patterns
without simply memorizing the training examples. Approaches to regulariza-
tion can involve adjusting the data, the model architecture, the cost function,
or the optimization routine, all with the aim of balancing the learning algo-
rithm to achieve robust generalization.

Many practical deep learning projects face a significant hurdle in tran-
sitioning from the lower right quadrant, where overfitting dominates, to the
upper right quadrant, where robust generalization prevails. This challenge
raises several important questions: how can overfitting be identified in the

4 Deep Learning Generalization

first place, and at what point does it become a serious concern? What meth-
ods are available to mitigate its impact, and why do some strategies yield
more success than others? In the sections that follow, we will delve into these
issues, discussing not only how overfitting can be detected but also how it
can be systematically addressed to achieve durable, effective performance on
unseen data.

1.1 Introducing Generalization

A typical machine-learning model is defined by the number of parameters
it contains and by how its architecture directs the interplay between these
parameters and the input features to generate predictions. Deep neural net-
works, in particular, are renowned for their complexity because they usually
contain an extensive number of parameters and employ multilayered archi-
tectures capable of capturing intricate, highly nonlinear relationships. This
heightened complexity can make them remarkably powerful, yet it also ren-
ders them more susceptible to overfitting, wherein the model not only learns
the genuine patterns but also memorizes random noise in the training data,
ultimately degrading performance on unseen test data.

In practical settings, although a subset of the data might be collected
with exceptional precision and carry little to no noise, most real-world data
contains some degree of randomness or measurement error. If a model starts
internalizing these noisy artifacts, it risks mistaking them for genuinely impor-
tant trends. Although this approach can yield high accuracy on the training
data, the same idiosyncratic noise typically does not recur in the test data,
causing the model to underperform when confronted with new examples where
such noise may not be present or assume another form. In our running exam
metaphor, this scenario parallels a student memorizing incorrect answers from
the practice exam; when those exact inaccuracies do not appear on the final,
the student’s performance inevitably suffers.

The central objective in model development is thus not to force the model
into a flawless fit for the training set, but rather to capture the genuine pat-
terns that remain consistent between the training and test data. In the same
way that we would not blindly trust every practice exam response, we should
train our models with a measure of caution, seeking to build solid inferential
capabilities that fit any particular set of examples in the unknown test set.

Interestingly, deliberately introducing noise can sometimes enhance the
learning process. This strategy, referred to as data augmentation, involves
injecting small controlled variations into input features, model parameters,
or even target labels. When carefully applied, data augmentation fosters ro-
bustness by teaching the model to handle diverse data variations, reducing
its susceptibility to overfitting on idiosyncratic noise. It mirrors studying

Unveiling Generalization in Deep Learning 5

FIGURE 1.2
The true relationship we want to learn, as represented by the curve, and the
training data available for model development, as represented by the dots.
The (vertical) deviations between the curve and the dots are due to random
observational noises (assumed to be additive in this case) or collection errors,
which almost always appear in practice. Our goal is to use these dots to build
a model to approximate the true pattern as much as possible, namely the real
relationship between input x and output y. At the same time, the learned
model needs to be robust enough to avoid distractions from the noises.

multiple slightly altered versions of similar questions or answers, accompanied
by potential typos, to prepare for an exam: by encountering these variations,
you develop greater adaptability and are better equipped to deal with any
unexpected twists in the final exam.

In fact, if the training set encompasses every possible variation found in
the test set, even a relatively simple method like k-nearest neighbors can
achieve near-perfect generalization since effectively every question in the final
exam has already been seen in practice. However, in real-world scenarios,
such perfect overlap is exceedingly rare. This is where noise injection and
data augmentation become invaluable, introducing controlled variations that
encourage models to handle unexpected deviations in new data. By making
them more resilient against randomness and overfitting, these techniques can
potentially foster robust performance on unseen data and ultimately help us
build models that generalize effectively.

Let us visualize the true pattern, the noise, and the model in action. In
Figure 1.2, the black dots represent the actual observations, or input-output

6 Deep Learning Generalization

pairs visualized in a two-dimensional coordinate system, while the dotted line
shows the true underlying function that we want our model to learn. However,
in practice, these observations rarely align perfectly with the true function due
to random noise or errors in the data collection process. This noise leads to
vertical deviations between the dots and the curve, making it more challenging
to approximate the true function. Our task is to build a model that approxi-
mates the dotted line as accurately as possible.

Although striving for solid generalization is crucial, reaching that goal can
be complicated by two frequent pitfalls mentioned before: underfitting and
overfitting. A more complex model, such as a neural network, often provides a
richer framework for capturing nuanced patterns than a simpler model like lin-
ear regression. However, if no mechanisms are in place to check the complexity
of the model—such as through regularization, careful architecture design, or
other constraints—the model may become overly sensitive to noise in the data.
This overfitting scenario emerges when the model not only learns the genuine
underlying relationships but also memorizes random fluctuations, ultimately
impairing its ability to generalize to unseen test data.

Conversely, if we select a model that is too simple, for example, using a
straight line (a linear regression model) where in fact a more flexible curve is
a better fit, it may lack the necessary capacity to capture the real complexity
in the data, resulting in underfitting. In this situation, the model is overly
constrained and fails to learn the crucial structures underlying the data, lead-
ing to suboptimal performance on both the training set and likely any unseen
test data.

There are two common scenarios where underfitting can occur. The first
happens when we restrict ourselves to a simple linear regression model, which
struggles to capture more complex, nonlinear relationships due to insufficient
model complexity. In the left panel of Figure 1.3, the straight line represents
the model, which is not flexible enough to approximate the true underlying
function, shown as a curved line. This lack of flexibility leads to underfitting,
where the model cannot capture the complexity of the data. However, when
the amount of training data is severely limited, as illustrated in the middle
panel, a complex model may not have sufficient information to learn effectively.
Faced with this data scarcity, a simpler model, like linear regression, often
performs better because it is less prone to overfitting. Conversely, a more
complex model, such as a neural network, is likely to memorize the small
number of available examples, undermining its ability to generalize. In this
situation, choosing a simpler model becomes the safer bet; however, the core
issue lies more with the lack of data than with the model itself. Even the most
sophisticated algorithm cannot perform well when trained on only a handful
of examples, as it becomes overly sensitive to noise.

In each of these scenarios, the model, illustrated by the straight line, re-
mains too simple to encapsulate the underlying complexity of the actual pat-
tern, as depicted by the curved line. Whether due to insufficient flexibility (as

Unveiling Generalization in Deep Learning 7

FIGURE 1.3
(Left) An example of fitting a nonlinear function using a linear function, which
underfits the training data. The model needs to be flexible enough to be able
to learn the pattern of the true function, which is often highly complex in
reality. (Middle) Another underfitting example, where the same linear regres-
sion model is now a preferred choice due to extremely limited training data.
When only exposed to very limited training data, it is totally fine to use lin-
ear regression, which tends to generalize better than a complex model such as
neural networks. Deep neural networks tend to be highly complex and are thus
prone to overfitting. However, the problem in this case is more on the training
data and less on the model choice; we are limited by what we can do in the
first place. Any model built on top of six observation points alone will likely
be sensitive and not robust to the noises in the data. (Right) An example of
overfitting due to an excessively complex model. The model perfectly fits all
dots, giving a zero error rate in the training set. However, the wiggly curve
comes at a price of generalizability — the model’s predictions for new input
data will be far off from the truth. In other words, it fails to generalize to
future unseen data in the test set. The excessive complexity leads to a large
generalization gap.

in the first scenario) or insufficient data (as in the second), the model fails to
adequately represent the richer structure present in the data.

When a model becomes excessively complex, as illustrated in the right
panel of Figure 1.3, the result is often overfitting—a situation in which the
model contorts itself to accommodate every point in the training set. This
leads to a highly irregular, wiggly curve that may align perfectly with the
training data but fails to perform well on new, unseen inputs. The gap between
training performance and test performance (loosely understood as the “gener-
alization gap”) becomes substantial because the model has effectively learned
the noise rather than the legitimate structure in the data. Consequently, it
performs poorly on the test set, missing the true underlying pattern in favor
of fitting idiosyncratic details from the training set.

Regularization techniques are frequently employed to combat both un-
derfitting and overfitting by steering the model toward an appropriate level
of complexity. They work by imposing penalties for unnecessary complex-
ity, thereby narrowing the generalization gap and preventing the model from
merely memorizing training noise. In line with Occam’s razor—where the

8 Deep Learning Generalization

simplest explanation often proves the most robust—simpler models tend to
exhibit better generalization. Even deep neural networks, known for their ca-
pacity to achieve extremely low training error, benefit from regularization
strategies such as weight decay (L2 regularization), dropout, or early stop-
ping. By favoring a less convoluted model over a more complex one, we strike
the right balance between flexibility and resilience. Since the ideal level of
complexity cannot always be predicted in advance, regularization provides a
mechanism for adjusting the model during training to ensure it captures the
true underlying patterns while remaining impervious to noise.

Striking the right balance in model complexity is thus a crucial consid-
eration. When the model is overly simple, it struggles to capture the actual
curvature in the data, leading to underfitting. In contrast, if it is too complex,
it may produce a highly fluctuating curve that conforms to noise rather than
reflecting the genuine patterns, leading to overfitting. The ultimate aim is to
adopt a model flexible enough to reveal the underlying relationships in the
data yet sufficiently robust to disregard the random noise.

1.2 The Curse of Dimensionality

Modern machine-learning models often become over-parameterized and prone
to overfitting due to the rapid expansion of Big Data. In recent years, the “four
Vs” of Big Data—volume (the quantity of data), velocity (the speed at which
data is generated and collected), variety (the different types of data), and
veracity (the uncertainty or noise in the data)—have all grown substantially.
This transformation stems from advances in data collection methods, such as
live-streaming video, web activity tracking, cheaper computational resources,
easily accessible machine-learning frameworks, and the fast pace of business
transactions. Although these developments open up remarkable opportunities,
they also pose formidable challenges for both data storage and modeling. As
data becomes more abundant, the incentive to design larger and more complex
models to handle it grows, making them increasingly susceptible to overfitting
if left unchecked.

One immediate obstacle lies in the high dimensionality of modern datasets.
The abundance of features, or dimensions, in Big Data imposes a “curse of
dimensionality,” making it increasingly challenging to detect and interpret
meaningful patterns. While traditional methods like linear regression perform
well with smaller, more manageable feature sets, they often struggle when
confronted with highly dimensional inputs. For example, image data can con-
tain thousands of features, necessitating more sophisticated algorithms to ef-
fectively extract, identify, and transform the critical information needed for
accurate predictions. As shown in Figure 1.4, image-based applications high-
light this complexity and underscore the need for more powerful techniques
that can handle extensive feature spaces.

Unveiling Generalization in Deep Learning 9

FIGURE 1.4
This image taken in Singapore’s Central Business District (CBD) illustrates
the high dimensionality of typical color images. The shape of the image is
(400, 225, 3), where 400 is the width, 225 is the height, and 3 refers to the
red, green, and blue color channels. In total, this single image contains 270,000
features (400 × 225 × 3).

Although images can be quite intricate, text data can be just as, if not
more, complex. A single document may contain numerous words whose mean-
ings shift according to context, forcing the model to discern which words mat-
ter most and how they interact. This can quickly escalate to tens of thousands
of features. Fortunately, regularization techniques help address the challenges
posed by high dimensionality. One approach, known as sparse learning, targets
a limited but important subset of features while discarding the rest, effectively
assuming that only a small number of features are truly predictive. The irrel-
evant features are assigned zero-valued coefficients and effectively removed. A
well-known example of sparse learning is the Least Absolute Shrinkage and
Selection Operator (Lasso), which imposes a penalty on the magnitude of co-
efficients, reducing overfitting and enhancing generalization by automatically
performing feature selection.

As an example of sparse learning, imagine we want to classify the image
in Figure 1.4 as either a country or a city scene. Pixel features that depict tall
buildings or other urban structures would likely be more predictive than those
capturing grass, sky, or other less distinguishing elements. By enforcing spar-
sity constraints, the model can assign zero coefficients to pixels that contribute

10 Deep Learning Generalization

little or no information, effectively silencing these irrelevant features and fo-
cusing its attention on the most salient predictors. This targeted emphasis
helps improve both the interpretability and performance of the classification
task.

Regularization offers multiple intuitive viewpoints here. From a geometric
perspective, introducing a penalty restricts how large the estimated coeffi-
cients can grow, effectively nudging some of them toward zero. In a Bayesian
framework, this can be seen as adopting a prior that assigns higher probability
to smaller coefficients, favoring those that are often zero. From the standpoint
of robust optimization, methods like Lasso serve to shield the model from the
effects of noise, yielding more stable coefficients that are less susceptible to
random fluctuations in the data.

1.3 More on Underfitting and Overfitting

Underfitting occurs when the effective model complex is insufficient compared
to the available training data, causing it to underperform on both the training
and test sets. In contrast, overfitting emerges when a model appears highly
accurate in potentially noisy training set but suffers on unseen data. In this
overfitting scenario, the generalization error increases, reflecting a substantial
gap between the model’s performance in the known training set (empirical
risk) and its performance in the unknown test set (true risk). The overarch-
ing concern here is generalizability: we ultimately want models that not only
match their training data but also produce reliable predictions on data they
have never encountered before.

Returning to our exam analogy, the effort we devote to studying can be
viewed as a stand-in for model complexity: the harder we study, the more
nuanced our mental model becomes. As illustrated in Figure 1.5, when we
begin to increase our study hours and sharpen our problem-solving skills,
both our practice exam (training) and final exam (test) scores show tangible
improvements. However, the closer we get to perfection, the more substan-
tial the effort required to achieve even marginal gains. Progressing from a
score of 60 to 70, for example, is generally easier than moving from 80 to
90, and each step closer to 100 demands exponentially greater investment. If
we push our study to the point of attaining flawless results on the practice
exam, we run the risk of overfitting—remembering the specific questions and
answers rather than honing general problem-solving abilities. This approach
may achieve near-perfect scores on the practice set but does little (due to
mere memorization) to ensure strong performance on the final exam. In fact,
the narrower the focus on memorizing precise answers, the larger the gap be-
tween our practice and test scores, reflecting a widening generalization gap.
Moreover, given the abundance of practice questions, there is no guarantee
that every paper is noise-free or without mistakes, thus making an overfitting
approach even more dangerous.

Unveiling Generalization in Deep Learning 11

FIGURE 1.5
The evolution of training and test performances as more effort is invested in
exam preparation. We start in the underfitting region, where both training
and test performances improve as the mental problem-solving model becomes
stronger. However, the model starts to overfit after passing the sweet spot,
where test performance begins to decline, even though training performance
continues to improve with added complexity.

The essential objective is to develop a mental model that excels on both
the practice and final exams. A well-generalizing model achieves an optimal
level of complexity: it is sufficiently sophisticated to recognize and capture the
core problem-solving patterns, yet not so intricate that it fails to apply those
insights to unfamiliar questions. Consequently, minimizing the generalization
gap—ensuring that performance on unseen data nearly matches performance
on known data—becomes paramount.

That brings us to the concept of a “sweet spot”: an optimal balance in
which performance on the final exam is maximized. In this range, the model
(or mental framework) is complex enough to capture the essential patterns,
yet not so intricate that it merely memorizes the practice set and overlooks
general principles. Beyond this sweet spot, increasing model complexity (or
study effort) becomes counterproductive, leading to overfitting. In technical
terms, the sweet spot marks the point at which test error is minimized and gen-
eralization capability is at its highest, reflecting an ideal alignment of model
capacity and data complexity.

An optimal model steers clear of both underfitting and overfitting. It main-
tains sufficient flexibility to capture the true patterns in the training data while
remaining simple enough to avoid being misled by noise. By achieving this del-
icate balance, it achieves strong performance on previously unseen data that

12 Deep Learning Generalization

follow the same data-generating distribution, successfully generalizing beyond
the confines of the training set.

1.4 Understanding Bias-Variance Trade-off

The concepts of underfitting and overfitting, illustrated by the sweet spot in
Figure 1.5, are intimately linked to the bias-variance trade-off, a principle
that applies broadly to machine-learning tasks like regression, classification,
and reinforcement learning. In a regression context, bias refers to the degree
to which, on average, the model predictions align with the true target val-
ues, linking to the idea of an expectation. High bias occurs when the model
systematically misses the mark, suggesting that it fails to capture the key pat-
terns in the data and consistently generates off-target predictions. Typically,
a model that is too simple has high bias, leading to underfitting. Returning
to our exam analogy, a simplistic mental model translates into poor scores
on both practice and final exams, reflecting an inability to grasp and apply
essential problem-solving patterns.

On the other hand, variance indicates how much a model’s predictions
change in response to small variations in the training data. High variance
typically signals overfitting, as the model focuses too heavily on perfectly
matching the training samples, making its predictions overly sensitive and
unstable when presented with new data. Ideally, we aim for low variance,
where predictions remain consistent despite minor fluctuations in the training
set. In practice, a high-variance model may achieve strong performance on
the training data by memorizing it, yet it often underperforms on the test set.
This aligns with our exam analogy: precisely memorizing the practice exam
answers can lead to a perfect score on the practice set, but it generally fails in
the final exam if any of those memorized answers are incorrect or if the exam
questions differ even slightly. Such significant variations in the predictions
from one set of data to another (high variance) indicate that the model has
overfitted the training data.

In machine learning, both bias and variance represent key sources of error
that we strive to minimize. Yet reducing both simultaneously is inherently dif-
ficult. Lowering bias typically entails increasing the model’s complexity, which
in turn can elevate variance and the likelihood of overfitting. Conversely, curb-
ing variance usually involves simplifying the model, potentially raising bias
and causing underfitting. This tension between addressing bias and variance
is referred to as the bias-variance trade-off.

Referring to Figure 1.6, we see four possible scenarios that describe varying
levels of bias and variance. In the first region, the model exhibits high bias and
low variance, which typically indicates that the model is too simplistic and
underfits the data. Moving to the second region, both bias and variance are

Unveiling Generalization in Deep Learning 13

FIGURE 1.6
Four possible bias-variance scenarios. The first region has high bias and low
variance due to the trained model being too simple and possibly underfitting.
The second region is the ideal state, with bias and variance both being low.
The third region has high bias and variance, suggesting the model deserves
further training to learn the underlying pattern. The fourth region indicates
an overfitting model that has low bias but high variance.

low, representing the ideal scenario in which the model captures the essential
patterns of the data without overfitting or underfitting. The third region shows
high bias and high variance, suggesting that the model is still in the early
stages of training and has not yet internalized the fundamental relationships
in the data; as a result, it does not perform well in either the training or test
sets. Finally, the fourth region features low bias but high variance, signaling
that the model has latched onto the training data too closely—memorizing
not only the true patterns but also the noise—thus exhibiting clear signs of
overfitting.

In practice, training often begins in the third region, where both bias and
variance remain high. As the model is refined and becomes more intricate,
we progress toward the first region, where bias is reduced and the model’s
predictions gain stability. Ideally, we would like to arrive at the second region,
characterized by low bias and low variance—a setting in which the model
balances accuracy on the training data with robust performance on unseen
data. However, it is more common to observe models that keep increasing in
complexity and overshoot into the fourth region, where overfitting sets in and
variance climbs too high.

Effective regularization methods can help steer a model toward achiev-
ing the ideal combination of low bias and low variance—the sweet spot for

14 Deep Learning Generalization

FIGURE 1.7
Example model training paths using proper regularization. There are multiple
ways to build a generalizable model with low bias and variance, as in region 2.
Depending on the similarity between the training set and the test set, as well
as the model class and training strategy used, the model training path could
travel in multiple ways. With proper regularization, the final trained model
will hopefully reach to region 2.

generalization. As shown in Figure 1.7, there are various training trajecto-
ries that can guide a model to this optimal region, depending on the specific
regularization strategies and training procedures employed. For example, one
path might move the model from region 3 (high bias, high variance) to region
1 (high bias, low variance), and then proceed to region 2 (low bias, low vari-
ance). Another path might take the model through region 4 (low bias, high
variance) before it ultimately settles in region 2. Each path demonstrates a
different route to achieving a well-generalized model, shaped by factors like
the match between training and test data, the chosen model architecture, and
the specific training regimen. For instance, some models might more natu-
rally move from region 3 (high bias, high variance) to region 1 (high bias, low
variance) before arriving at region 2, while others might briefly pass through
region 4 (low bias, high variance) and then settle at region 2. Regardless of the
path, the overarching goal is to guide the model to region 2, where accuracy
(low bias) and stability (low variance) are both maintained, ensuring robust
performance on unseen data.

Achieving the right balance entails choosing a model that is neither overly
simplistic nor needlessly complex, presuming sufficient data exists to capture
the problem’s inherent variability. Concretely, this means steering clear of un-
derfitting as well as overfitting. The central objective is to drive down the

Unveiling Generalization in Deep Learning 15

FIGURE 1.8
The double ascent phenomenon using complex models such as deep neural
networks. As the model continues to become more complex, we will start to
observe increasing performance in the test data, where the variance continues
to decrease when the bias is zero.

total error—encompassing both bias and variance—through a careful balanc-
ing act that reduces each source of error without allowing one to dominate.
By managing this trade-off effectively, we can attain lower total error and ulti-
mately enhance the model’s performance. By thoughtfully managing variance
through regularization, the model gains stability and robustness, reducing its
likelihood of overfitting and enhancing its capacity to generalize to unseen
data. While this process may introduce a slight increase in bias, the model’s
average predictions will still hover near the true target values, preserving ac-
curacy without sacrificing stability.

It is worth mentioning that the classic bias-variance trade-off does not uni-
versally hold. In highly parameterized models such as deep neural networks,
with sufficient training, variance can diminish even while bias remains close
to zero. This phenomenon is often referred to as “double descent,” (or double
ascent), as depicted in Figure 1.8. Initially, increasing model complexity can
cause test performance to drop because of overfitting. However, beyond a cer-
tain point, further increases in complexity actually improve test performance
again, accompanied by a reduction in variance—even though bias stays low.
This resurgence in performance characterizes the essence of the double-descent
phenomenon.

16 Deep Learning Generalization

In this regime, the usual bias-variance analysis does not necessarily capture
a clear trade-off between the two. When working with deep neural networks,
sufficient training time and iterations can allow the model to move beyond the
overfitting phase and ultimately achieve stronger generalization on the test
data. This raises the question: why do deep learning models, even when they
appear to overfit the training set, still end up generalizing effectively to new
data? The answer seems to lie in the very nature of deep neural networks and,
in particular, their training via stochastic gradient descent (SGD), as discussed
in [15]. Through a process sometimes referred to as implicit regularization,
SGD discourages pure memorization of the training examples, enabling the
model to hone in on patterns that extend to unseen data and thus attain
better test performance.

1.5 More on the Model Training Path

Let’s delve further into the model training trajectory. The standard machine-
learning procedure begins with minimizing a particular loss function—often
computed as the discrepancy between the model’s predictions and the actual
labels in the training set—with the intent that this model will also perform
effectively on unseen test data. This approach, widely known as empirical risk
minimization, parallels our exam analogy: by practicing on known questions
(the training set), we aim for strong performance on the final exam (the test
set). However, this process can yield four distinct outcomes, each capturing
how thoroughly the model has learned from its training data and how suc-
cessfully it generalizes beyond it.

In the first scenario, both the training set error and test set error are high,
indicating that the model is underfitting. It struggles to extract meaningful
patterns from the training data, either because it is too simple or because it has
not been trained sufficiently to grasp the underlying structure. To address this
issue, one can increase the model’s complexity, extend the training duration,
refine the hyperparameters, or even switch to a more suitable class of models.

The second scenario, in which we see high training set error yet low test
set error, can occur but is extremely uncommon. Under usual assumptions
where the training and test sets come from the same data-generating process,
a model that underperforms on the training set is unlikely to excel on the test
set. While random chance or particular quirks in the data might occasionally
lead to better performance on the test set, the conventional expectation is
that struggling to fit the training data implies difficulty in handling new data
as well.

In the third scenario, we observe low error on the training set combined
with high error on the test set—a hallmark of overfitting. The model, hav-
ing become excessively complex, almost memorizes the training examples and

Unveiling Generalization in Deep Learning 17

FIGURE 1.9
Four different scenarios at the end of training. We wish to build a model that
not only achieves low training error but also, and more importantly, low test
error.

consequently struggles to handle unseen data. While it may perform near-
flawlessly on the training set, it is overly sensitive to noise or inconsequential
patterns, leading to poor test performance. This common challenge is usually
mitigated through various regularization strategies that encourage the model
to learn generalizable patterns instead of intricately fitting every training in-
stance.

Lastly, the fourth scenario—considered the ideal case—occurs when both
the training set error and the test set error are low. This outcome suggests that
the model has effectively captured the crucial patterns of the data, avoiding
both underfitting and overfitting, and demonstrating strong generalization to
unseen data.

Figure 1.9 illustrates these four scenarios, helping us visualize the different
outcomes that can result from the model training process.

Let us change our perspective. Our main objective is to pick a model—out
of potentially many—that performs exceptionally well on both the training
set and the test set. Each model corresponds to a specific set of parameters
and a configuration of mathematical operations—like addition, multiplication,

18 Deep Learning Generalization

FIGURE 1.10
The total space of a (big enough) model class. Each point represents a partic-
ular model, and the relative positioning is arbitrary in this example. Our goal
is to develop a properly regularized model where both training error and test
error are low.

and other transformations—that govern how information flows and interacts
within the model. All these possible configurations, taken together, constitute
what we call a model class. If we consider a neural network, for instance, its
model class includes every conceivable arrangement of weights and biases in
the prespecified architecture. Our challenge is to navigate this vast collection
of candidate models and identify the configuration that yields strong perfor-
mance on the training data while still generalizing effectively to unseen data.

What we aim to do is locate one of the “good” models within this vast class
of models, one that can generalize effectively to new unseen data, by carefully
training it on the available training set. As depicted in Figure 1.10, this model
class, which can be extremely large for complex architectures such as neural
networks, encompasses numerous possible parameter configurations. Some of
these configurations will extend well to the test set, while others may overfit
or underfit, failing to capture the right balance of complexity and robustness.
Ultimately, our task is to train the model so that we settle on a configuration
that achieves not only strong performance on the training set but also reliable
accuracy when confronted with the test set, thus ensuring good generalization.

The model training process in Figure 1.10 can also be thought of as moving
through different model configurations in the search for the one that best
fulfills a chosen optimization criterion. Given the breadth of potential paths,
the outcome hinges on factors like the chosen model class, training algorithm,
and specific training regimen. Figure 1.11 offers a concrete illustration of this
path in the case of a classification and regression tree (CART) model. Initially,

Unveiling Generalization in Deep Learning 19

FIGURE 1.11
Example path from training a random forest model. Depending on the model
class and training strategy used, the specific training path may vary for dif-
ferent models.

the tree underfits (from the first point to the second), owing to a lack of
complexity. As more branches and leaves are added, the model grows overly
complex, risking overfitting (the third point). By pruning unneeded branches,
one can effectively regularize the model, paring it back to a simpler, more
generalizable structure that avoids overfitting and performs reliably on unseen
data.

In practice, it is often the case that more than one model configuration can
generalize effectively to the test set. As illustrated by the dashed circle in Fig-
ure 1.12, these configurations form a collection of models that achieve strong
performance on unseen data. Our primary objective is to train the model so
that it ends up inside this dashed circle, where generalization is secure. When
overfitting becomes an issue, regularization techniques step in to constrain
the model complexity, thereby increasing the likelihood of converging to one
of the well-generalizing solutions within this collection.

In a typical training routine, the objective is to minimize training error,
often referred to as empirical risk. This metric indicates how well a model
might generalize, given that training and test sets follow similar distributions.
Unfortunately, in many real-world scenarios, this assumption may not strictly
hold. Consequently, minimizing empirical risk alone might not guarantee ro-
bust generalization. By incorporating regularization into the training process,
an approach known as structural risk minimization, practitioners can better

20 Deep Learning Generalization

FIGURE 1.12
Two possible outcomes of training a model in terms of its generalizability to
the test set.

control model complexity and improve performance on the test set, even when
there is a slight mismatch between training and test distributions.

To elaborate, a model that achieves near-perfect predictions on the train-
ing data is not guaranteed to perform equally well on unseen test data. This
situation arises because, during training, the model is exposed to a particu-
lar range of input-output pairs and learns how to map those inputs to their
corresponding outputs. That ability to transfer learned knowledge to new in-
puts hinges on whether they resemble the patterns observed in training. Con-
sequently, if the training set and the test set originate from similar distribu-
tions, a well-trained model will likely exhibit strong generalization. However,
this similarity cannot always be taken for granted, especially when random
noise, limited data, or other complexities disrupt the representativeness of the
training set in real-world scenarios.

To mitigate the generalization gap, one strategy involves deploying deep
neural networks trained with SGD, leveraging the “double-descent” phe-
nomenon as mentioned earlier. Although deep networks are characteristically
high-dimensional, SGD capitalizes on this complexity by implicitly regular-
izing the model, often leading to strong performance on both training and
test sets. In parallel, explicit regularization techniques—such as weight de-
cay, dropout, or early stopping—can also be applied to directly rein in model
complexity, further reducing the risk of overfitting and strengthening general-
ization.

Unveiling Generalization in Deep Learning 21

Note that different models trace distinct routes through the search space
during training, and some are more prone than others to converge on a well-
generalizing solution (those located in the dashed circle in Figure 1.12). For
example, when deep neural networks, often extremely complex, are adequately
trained, they can achieve a training error that is near zero. Nevertheless, they
can still perform well on the test set, which at first seems contradictory because
highly complex models are usually expected to overfit and fail to generalize.
As introduced earlier, this apparent paradox is resolved by the double-descent
phenomenon, a hallmark behavior in over-parameterizedmodels like deep neu-
ral networks.

In deep neural networks, once the model exceeds a certain complexity
threshold, it can exhibit a decrease in variance even after its bias effectively
reaches zero as training continues, a key observation based on the double-
descent phenomenon. Furthermore, because the true function to be approxi-
mated is often highly complex and nonconvex, the loss landscape may exhibit
multiple local minima. Each of these local minima can correspond to an equally
effective model, capable of achieving zero training error or minimal regular-
ized loss. Consequently, it is not uncommon to end up with multiple high-
performing models trained on the same data, all of which provide a compara-
bly strong generalization in practice.

These “best” models can collectively be visualized as a set of optimal so-
lutions. As shown in Figure 1.13, a Venn diagram depicts three overlapping
circles, each representing a set of models defined by distinct performance crite-
ria. Circle 1 encompasses models that perfectly fit the training set and achieve
zero training error. Circle 2 includes models refined by regularization, which
manages complexity and mitigates overfitting. Finally, Circle 3 captures mod-
els that excel in generalizing, evidenced by their low error in the test set. The
intersection of these circles represents a collection of models that not only
fit the training data but also handle noise effectively and demonstrate strong
performance on unseen data.

The key takeaway is that any pair of these circles can intersect, yet their
overlap is never guaranteed. For instance, just because a model fits the train-
ing data perfectly and achieves zero training error (Circle 1) does not imply
that it will also generalize successfully to unseen data (Circle 3). Likewise, em-
ploying a particular form of regularization (Circle 2) does not automatically
ensure that the model will end up generalizing well. Each circle thus repre-
sents a different aspect of model performance, and their intersections show
that while some models can meet multiple criteria—fitting the training set,
being regularized, and generalizing effectively—others might only fulfill one
or two of these requirements.

When we use highly over-parameterized models such as deep neural net-
works in conjunction with suitable regularization methods, the odds of finding
a model that generalizes effectively increase considerably. In other words, we
become more likely to land at the intersection of all three circles: models that
fit the training data perfectly (achieving zero training error) are regularized
to control complexity and ultimately generalize well on the test set.

22 Deep Learning Generalization

FIGURE 1.13
Three different collections of candidate models. It should be noted that either
reaching zero error in the training set, or applying regularization, or a com-
bination of both, does not guarantee building a generalizable model in the
end. What happens is that using over-parameterized models like deep neural
networks, as well as applying proper regularization techniques, tends to end
up with a model that generalizes well to the test set.

1.6 Understanding the Model Training Process

A typical model training process begins with a set of training data. In super-
vised learning tasks, this data is made up of pairs of inputs and outputs, where
each input entry includes multiple features that describe the observation from
various perspectives. The associated output represents the true target value,
serving as the “correct answer” that guides the training process. By repeat-
edly evaluating how well the model’s predictions match these target values,
the training algorithm refines the mapping function so that it can accurately
transform any given input into its corresponding output.

A trained model is composed of two key elements: the parameters, which
can be modified during training, and the architecture, which governs how those
parameters interact with the input data to generate the predicted output.
The model prediction is then compared to the actual target value, and the
difference between the two, called the error, serves as a performance measure.
This error reveals how close the predicted output of the model is to the true
target, indicating whether the model reliably captures the underlying data
patterns or if further adjustments are needed.

Unveiling Generalization in Deep Learning 23

FIGURE 1.14
Example of a typical model training process. The workflow starts with the
available training data and gradually tunes a model. The tuning process re-
quires matching the model prediction to the target output, where the gap
is measured by a particular cost function and used as feedback for the next
round of tuning. Each tuning produces a new model, and we want to look for
a model that minimizes the cost.

In the training process, an optimization algorithm systematically updates
the model’s parameters (and optionally its architecture) with the goal of min-
imizing the error. After each update, the model makes a new prediction, and
the error is recalculated, creating a feedback loop that continually refines the
model’s performance. This process repeats until the error is reduced to a sat-
isfactory level, indicating that the model has effectively learned from the data.

The entire training process, depicted in Figure 1.14, features four key
components: training data, model, cost, and optimization that collectively
shape how a model learns. Each of these components can be a strategic point
for introducing regularization to boost generalization performance. A notable
example is data augmentation, a technique often used in object detection tasks
to enhance the training data itself. By systematically injecting noise or apply-
ing transformation, such as shearing, rotation, or flipping, to the input images,
we create a larger, more varied dataset. These newly augmented images are
then included in the original training set, allowing the model to encounter a
wider range of visual scenarios. As a result, it learns to handle variations more
effectively, reducing overfitting and improving robustness to unseen data.

This diversity in training data plays a vital role in enhancing the ability
of the model to generalize to new unseen inputs. By exposing the model to
a broader range of variations during training, we effectively prepare it to

24 Deep Learning Generalization

handle the many ways objects or scenes can appear in the real world. This
explains why data augmentation is especially advantageous in tasks such as
image classification, where the model must recognize objects across different
viewing angles, lighting conditions, or distortions.

1.7 An Overview of Different Regularization Techniques

Many regularization methods have been devised that target various aspects of
the machine-learning pipeline: data, model, cost, optimization, or a hybrid of
these. In practice, the effectiveness of each technique depends on the specific
problem at hand, with some methods delivering more immediate performance
gains than others. However, much of the current research on these approaches
exists in a fragmented form, typically treating each technique in isolation. To
address this issue, our aim is to consolidate popular regularization strategies
within a single cohesive framework.

Building on the previously discussed training process, training a neural
network follows a cycle of feeding data into the network architecture, allowing
the model parameters to interact with those inputs to produce predictions,
computing the error, and then adjusting the model’s weights based on that er-
ror. The top panel of Figure 1.15 shows how various regularization techniques
can be grouped according to these stages in the model training pipeline, re-
flecting a model-centric view of how different methods fit into the broader
workflow.

Alongside the model-centric categorization, regularization methods can
also be viewed through the lens of implicit versus explicit techniques. Implicit
regularization influences the model’s behavior without directly imposing ad-
ditional penalty terms or constraints. A key example is SGD, a widely used
optimization algorithm in deep learning. During each iteration of SGD, the
model is updated using a small batch of examples randomly selected from the
training set, thus introducing variability (random gradient) into the training
trajectory. This process immerses the model in diverse data patterns, indi-
rectly enhancing its robustness. Moreover, because the parameter updates
are somewhat uncorrelated, SGD inherently acts as a form of regularization,
steering the model toward solutions that generalize better on the test set.

On the other hand, explicit regularization involves directly managing cer-
tain aspects of model training, often by constraining or penalizing exces-
sive model complexity. The middle panel of Figure 1.15 illustrates several
commonly used implicit and explicit regularization strategies. Among these,
dropout is noteworthy because it can act as an implicit and explicit regu-
larizer: by randomly “dropping” certain neurons during training, it explicitly
reduces the capacity of the network at each iteration, while also implicitly
introducing variability that improves the model’s ability to generalize.

Unveiling Generalization in Deep Learning 25

FIGURE 1.15
Different ways of categorizing regularization techniques.

Finally, in the bottom panel of Figure 1.15, regularization techniques are
classified as either strong or weak, reflecting the degree of their impact on the
model. For instance, explicit methods such as Lasso have a strong regular-
izing effect because they directly prune model complexity by forcing certain
coefficients to zero, effectively discarding unimportant features. In contrast,
methods such as data augmentation work by providing the model with mul-
tiple versions of the same dataset, enabling it to learn robust patterns from
variations in the data. This results in a more gradual or indirect influence on
generalization, making data augmentation a comparatively weaker regularizer.

For instance, with image data, data augmentation can reflect geometric
properties such as symmetry, rotation, or permutation. These properties are
often hard for the model to learn directly from the raw images. By augmenting
the data with these transformations, the model is more likely to capture these
properties, improving its ability to generalize to new, unseen images.

1.8 Toward Model Generalization via Hyperparameter

Tuning

In addition to the implicit and explicit regularization methods discussed, an-
other powerful way to boost model generalization is hyperparameter tuning.

26 Deep Learning Generalization

The primary goal here is to determine the optimal set of hyperparameters that
maximize the model performance on new unseen data, ultimately improving
its ability to generalize. Hyperparameter tuning also provides fine-grained
control over different parts of the training pipeline, such as the model’s archi-
tecture, learning rate, and regularization strength, allowing us to navigate the
balance between underfitting and overfitting more effectively. By systemati-
cally refining these hyperparameters, we help ensure that the model is neither
too simple nor too complex, a critical factor for robust generalization. One
commonly used technique for hyperparameter tuning is Bayesian optimiza-
tion, which reasons about the next set of hyperparameters to try out in a
principled manner [9].

It is important to note that hyperparameters are parameters that the
model does not optimize during training; rather, they are chosen (or pre-fixed)
by the user before training begins. Because they remain fixed throughout the
learning process, their values can have a significant impact on both the speed
and quality of the model’s convergence. Common examples of hyperparame-
ters include the learning rate, which dictates the step size for gradient-based
updates; the number of hidden layers in a neural network, determining its
depth and representational capacity; and the kernel size in a support vector
machine (SVM), which influences how the model classifies data by shaping
the feature space.

For example, in a neural network, adjusting the learning rate helps to
strike the best compromise between fast convergence and a stable learning
trajectory: higher rates can speed up training but may cause instability, while
lower rates lead to more reliable but slower improvement. Likewise, tuning the
number of hidden layers or the number of neurons shapes the architecture’s
capacity to capture the data’s complexity without making the model exces-
sively large or unwieldy. Meanwhile, refining the strength of regularization
(another hyperparameter in weighting the importance of the regularization
term compared with the loss term) can prevent the model from overfitting
to the training data, helping it maintain the flexibility needed to generalize
successfully to unseen examples.

In general, the path to achieve good generalization differs based on the
characteristics of the dataset and the specific problem domain, which means
that there is no panacea that works best in all settings. Different techniques
tend to excel under different circumstances, influenced by factors such as the
complexity of the model, the amount of data available, and the nature of the
underlying task.

1.9 Summary

In this chapter, we have examined how the notion of “training for an exam”
in machine learning helps illuminate the core challenge of building models

Unveiling Generalization in Deep Learning 27

that perform well not only on training data (the practice exam) but also on
unseen data (the final exam). We introduced four possible outcomes, rang-
ing from underfitting (weak performance in both training and test sets) to
strong generalization (good performance on both), along with two more ex-
treme scenarios of rare or unbalanced performance. Central to this discus-
sion is the idea that models should learn the underlying patterns of the data
rather than merely memorizing examples that may contain noise or inaccu-
racies. In deep learning, overfitting is of particular concern because neural
networks, with their large number of parameters, can easily learn spurious
details that reduce their ability to generalize. Nevertheless, we discussed that
well-structured training procedures, coupled with suitable regularization, can
bridge the gap from overfitting to robust generalization. The ultimate goal is
to strike a balance—sometimes called the “sweet spot”—where the model has
enough capacity to capture meaningful relationships but not so much that it
memorizes irrelevant details.

We then shifted focus to how over-parameterized models, such as deep
neural networks, can eventually achieve excellent test performance despite
appearing to overfit at first. This behavior, known as the “double-descent”
phenomenon, occurs when further increases in model complexity (such as a
number of parameters or training epochs), coupled with sufficient training,
can actually reduce test error again after an initial surge in overfitting. In
simpler contexts, the bias-variance trade-off explains why increasing model
capacity often lowers bias but raises variance, while reducing capacity does
the opposite. However, deep neural networks trained using SGD can exhibit
an implicit regularization effect, meaning that even in high-dimensional pa-
rameter spaces, they are nudged toward solutions that generalize more reliably
than one might expect. Alongside these implicit effects, explicit regularization
techniques (e.g., dropout, L2 weight penalties, early stopping) are empirically
useful tools in preventing the network from locking onto unhelpful details.
This chapter emphasized that the capacity of modern deep learning models,
though immense, can still be harnessed to build robust predictors with the
right design of architecture, training strategies, and regularization.

Another major theme was the “curse of dimensionality,” in which real-
world data with numerous features, such as high-resolution images or large
vocabularies in text, require models powerful enough to extract useful re-
lationships. Traditional methods (like linear regression) often underfit when
faced with such complexity, prompting the need for deeper architectures and
more sophisticated feature processing. However, simply increasing the model
size invites a higher risk of overfitting if not properly regularized. Techniques
like data augmentation introduce controlled perturbations, such as shearing,
rotation, flipping, or noise injection, so that the model learns robust, general
features and is less susceptible to random fluctuations. Sparse learning meth-
ods, such as Lasso, tackle dimensionality by forcing small or unimportant coef-
ficients to zero, thus improving interpretability and performance. Throughout
these discussions, we showed how explicit (direct) regularization and implicit

28 Deep Learning Generalization

(indirect) regularization both play critical roles in shaping the behavior of a
model.

Finally, we considered the broader workflow of model selection, training,
and hyperparameter tuning. Every model lies in a large “model class” of
possible parameter configurations. By minimizing empirical risk (training er-
ror), we hope to discover a region of parameter space that also generalizes
well. However, real-world complexities, such as noisy measurements or mis-
matches between training and test distributions, make this process nontrivial.
Proper regularization, structural risk minimization, and careful hyperparam-
eter choices, such as learning rate, network depth, or regularization strength,
help us navigate to reliable solutions. We saw that multiple “good” models
may emerge (e.g., those achieving zero training error, those with strong reg-
ularization, and those that generalize well), and the intersection of these sets
is where we want to end up. In the end, there is no single recipe for guaran-
teed success: data augmentation, bias-variance management, double-descent
insights, and hyperparameter tuning must be tailored to each problem’s data
characteristics. Nonetheless, when applied judiciously, these strategies unify
to produce models that not only excel on their “practice exams” but also
confidently tackle the “final exam” of unseen, real-world data.

2

Introduction to Statistical Learning Theory

Continuing from our running example in Chapter 1, many of us strive to excel
in school exams. From a young age, we are encouraged not only to prepare
thoroughly for practice tests but also to ensure that we can perform well on the
final exam. In the context of machine learning, this mindset is closely mirrored
by the training process. Specifically, we train a model on a labeled dataset,
where the inputs x (the “questions”) and the outputs y (the “answers”) are
known, just as we study and refine our understanding using practice tests.
Ultimately, however, our goal is to deploy or evaluate the trained model on
previously unseen data, which we can think of as the final exam. In doing
so, we capture the critical concept of generalization: just as true academic
success is gauged by performance on the final exam, the success of a model is
determined by how effectively it performs on data beyond the training set.

To formalize, we begin with a training dataset {(xi, yi)}ni=1, where each
pair (xi, yi) consists of an input xi and its associated label yi. Here, xi ∈ X
lies in the input space X , often referred to as the space of input instances (or
observations). This space encompasses all possible representations of the ob-
jects we intend to model, in either classification (modeling a categorical y) or
regression setting (modeling a continuous y). For example, in an image clas-
sification setting, each xi might be a feature vector encoding properties such
as color intensity, texture, or shape extracted from an image. By representing
these features as vectors, we create a structured way to capture the essential
characteristics of the data for further processing in our learning algorithms.

The label yi resides in the label space Y, which encompasses all possible
categories or classes. In a classification setting, Y is typically a finite set of
discrete labels, such as {cat, dog, cow, . . . }. Each yi thus identifies one of these
categories, specifying the true class of the corresponding input xi. Our prin-
cipal objective in classification is to map every instance in X to the correct
category in Y as much as possible, thereby minimizing classification errors.
However, this error measure is nonconvex, making direct minimization chal-
lenging. Instead, we often employ a more tractable loss function, such as the
cross-entropy loss, to guide the learning process effectively.

Thus, given the training data {(xi, yi)}ni=1, our task is to learn a mapping
or function f : X → Y that can accurately assign labels to previously unseen
instances. Concretely, we seek a function f such that, for any new input x, the
predicted label f(x) coincides with the true label y as frequently as possible.
This goal amounts to reducing the number of elements in X for which f(x)

DOI: 10.1201/9781003511601-2 29

https://doi.org/10.1201/9781003511601-2

30 Deep Learning Generalization

diverges from the true label, effectively minimizing the classification error
across the input space.

The function f that accomplishes this mapping from X to Y is commonly
referred to as a classifier. We assess the effectiveness of a classifier by exam-
ining how well it generalizes, meaning its ability to predict labels accurately
for new inputs not included in the original training set. In other words, good
generalization implies that the learned mapping is not merely memorizing the
training examples but capturing underlying patterns that extend to unseen
data. In practice, we often quantify a classifier’s performance using its clas-
sification error, which is defined as the fraction of instances in X that are
assigned incorrect labels. This error rate can be estimated using a held-out
test set, cross-validation procedures, or other validation strategies designed to
evaluate the model’s performance on data beyond the training set.

As discussed in Chapter 1, depending on how well a model generalizes,
we may observe four distinct outcomes. One possibility is strong generaliza-
tion, where the model achieves high accuracy on both the training and test
datasets. Another possibility is underfitting, in which the model exhibits poor
performance on both sets, indicating it has not captured the essential patterns
in the data. A third scenario is overfitting, characterized by excellent perfor-
mance on the training data but poor results on unseen test data. Finally, there
is the rare occurrence of an anomalous generalization, where the model per-
forms poorly on the training data but unexpectedly excels on the test data,
an outcome often attributed to random chance or an unusual alignment with
the test distribution.

Formally, we denote by Ltrain(θ) the training loss and by Ltest(θ) the test
loss, where θ represents the parameters of the model. The training loss is
caused by

Ltrain(θ) =
1

n

n∑

i=1

L
(
yi, f(xi; θ)

)
,

and the test loss is

Ltest(θ) = E(x,y)∼Dtest

[
L
(
y, f(x; θ)

)]
,

where L is a chosen loss function, such as mean squared error for regression
or cross-entropy for classification, and Dtest is the distribution of test data.
Intuitively, the training loss measures how well the model fits the labeled
examples in the training set, whereas the test loss estimates how well the
model generalizes to new, unseen data.

The training loss Ltrain(θ), computed by averaging the chosen loss function
L across all training examples, reflects the degree to which the predictions of
a model match the labels in the training dataset. For example, in regression
problems, a common choice for L is the squared error for the i-th instance,
defined as,

L
(
yi, f(xi; θ)

)
=
(
yi − f(xi; θ)

)2
,

Introduction to Statistical Learning Theory 31

which measures the discrepancy between the predicted value f(xi; θ) and the
true value yi.

In contrast, classification tasks often employ the cross-entropy loss, which
quantifies how dissimilar the predicted probability distribution is from the
true label distribution. Specifically, denoting

p̂i,c =
efc(xi;θ)

∑K
k=1 e

fk(xi;θ)

as the predicted probability for class c of the i-th instance, the cross-entropy
loss for a single training example (xi, yi) can be written as

L
(
yi, f(xi; θ)

)
= −

K∑

c=1

1(yi = c) log p̂i,c.

Here, 1(yi = c) is an indicator function that is 1 if yi = c and 0 otherwise.
This ensures that only the log probability of the correct class contributes to
the loss, thus encouraging the model to assign a high probability to the true
label and align its prediction to the real target.

In this chapter, we delve into the mathematical framework of statistical
learning theory and discuss its key principles, laying the groundwork for sub-
sequent topics in machine learning.

2.1 Introducing Generalization

A typical machine-learning model is defined by its parameters θ and by the
way its architecture regulates the interaction between these parameters and
the input features to generate predictions. Deep neural networks, in particular,
often have a large number of parameters as well as intricate designs, which
make them highly expressive yet susceptible to overfitting. In such cases, the
model may memorize both the true patterns in the training data and the
random noise, causing it to perform poorly when presented with new, unseen
data. Understanding and mitigating this risk is a central theme in developing
effective learning systems, where the goal is to strike a balance between model
complexity and generalization performance.

Our primary objective in learning is to minimize the expected risk, also
referred to as the true risk Ltest(θ) from earlier,

R(θ) = E(x,y)∼D

[
L
(
y, f(x; θ)

)]
,

where D represents the true, yet typically unknown, data-generating distribu-
tion from which the input-output pair (x, y) is sampled. The quantity R(θ)
thus captures the expected average loss throughout the data distribution,

32 Deep Learning Generalization

serving as the most widely used measure of the predictive performance of any
model.

In practice, because D is not accessible, we instead work with the available
training data and minimize the following empirical risk (referred to as Ltrain(θ)
earlier),

Remp(θ) =
1

n

n∑

i=1

L
(
yi, f(xi; θ)

)
,

which approximates the expected risk by averaging the loss over the finite
training dataset. However, simply minimizing Remp(θ) does not guarantee
a reduction in R(θ), as this is related to how good the model class is in
approximating the true risk (also called the Bayes risk) and how good the
training procedure is in obtaining the best risk within the model class (more
on this later). In particular, if the model becomes too tuned to the training
data, capturing noise rather than true patterns can occur, thus reducing the
generalizability of the model in new unseen samples.

2.1.1 Revisiting underfitting and overfitting

Consider the underlying true function f∗(x) that we are looking to learn.
However, due to the presence of the random noise term ǫ, assumed to be
additive, the observed outputs y are generated according to:

y = f∗(x) + ǫ,

where ǫ is commonly assumed to be drawn from a normal distribution, ǫ ∼
N (0, σ2), with a constant variance. Our objective is to find an estimate f̂(x)
that approximates f∗(x) as accurately as possible while not fitting too much
to the noise term. However, when the model is overly flexible, it may capture
both the underlying function and the random noise, which we already know as
overfitting. This results in poor generalization to new data because the model
has effectively learned to replicate noise rather than the true signal.

When it comes to underfitting, it means that the model lacks the capacity
to capture the true structure in f∗(x). One reason might be inadequate model
complexity; for instance, employing a simple linear model y = θ0 + θ1x to
capture data that, in reality, follows a nonlinear relationship y = θ0 + θ1x +
θ2x

2. In such scenarios, the model exhibits high bias (high distance between

E[f̂(x)] and E[f∗(x)]) and struggles in both the training set and any held-out
test data, as it does not account for the curvature inherent in the underlying
function f∗(x) and therefore commits systematic errors.

Note that underfitting can also result from insufficient training data. Even
a complex model such as a deep neural network will not perform effectively
if the available training data are too limited. In this case, the model simply
does not have enough information to learn the intricate patterns needed for
accurate predictions, ultimately producing poor performance.

Introduction to Statistical Learning Theory 33

On the other hand, overfitting arises when our model is excessively com-
plex in relation to the underlying patterns in the data. In this case, the model
not only learns the true relationships present in the training set but also cap-
tures random noise, such as fitting a high-degree polynomial to data that are
fundamentally linear. Because the model is capable of matching the training
data so closely (to the point of perfect interpolation where Remp(θ) = 0), it
typically exhibits low bias; however, it suffers from high variance (due to spu-
rious noisy patterns that are only present in training set but missing in test
set), causing it to perform poorly on new, unseen data. This high variance re-
flects the model’s increased sensitivity to random fluctuations in the training
set, causing it to interpret the noise as if it were a genuine signal.

To achieve a good generalization performance in the test set, we must strike
an appropriate balance in the complexity of our model. This is often accom-
plished through regularization, which moderates overfitting by introducing an
additional term that penalizes overly complex solutions. In particular, one
can adopt a structural risk minimization (SRM) framework that minimizes a
combined objective of the form

Lreg(θ) = Lemp(θ) + λR(θ),

where Lemp(θ) denotes the empirical loss, R(θ) is a regularization term (e.g.,
the squared norm ‖θ‖2 in Ridge regression), and λ is a hyperparameter con-
trolling the strength of the penalty. By appropriately tuning λ (a problem
of hyperparameter tuning) and selecting a suitable form for R(θ) (another
decision outside the model estimation stage), we can manage the trade-off
between fitting the training data and preventing the model from overfitting,
thereby improving performance on unseen data.

2.1.2 Revisiting bias-variance tradeoff

To gain deeper insights into underfitting and overfitting, we examine the bias-
variance tradeoff, a central idea in statistical learning theory that clarifies how
model complexity influences the expected generalization error. Specifically,
consider the expected squared prediction error for some input x:

ED,ǫ

[
(y − f̂(x))2

]
,

where the expectation is taken over both the randomness in the training data
D and the noise ǫ. This error can be decomposed into three components: the
bias, the variance, and the irreducible error. The irreducible error term σ2

ǫ is
due to the inherent variability of the noise ǫ and cannot be further eliminated
by any model. The bias term reflects the systematic deviation between the
expected model prediction and the true function value:

Bias[f̂(x)] = ED[f̂(x)] − f∗(x),

34 Deep Learning Generalization

That is, the bias term measures how far away our prediction is from the
target, on average. We would thus prefer a model with a low bias in order to
fit the target as closely as possible.

Finally, the variance term captures the variability of the model predictions
in different training sets and is defined as:

Var[f̂(x)] = ED

[(
f̂(x) − ED[f̂(x)]

)2
]

.

which is essentially the variance (average squared deviation from the mean)
in the model predictions. We would thus prefer to fit a stable model whose
predictions are centered around the true target without too many big fluctu-
ations.

Putting these together, it can be shown that the expected squared predic-
tion error becomes:

ED,ǫ

[
(y − f̂(x))2

]
= σ2

ǫ + Bias2[f̂(x)] + Var[f̂(x)].

Given these three terms, if the model is too simple, the bias term dominates
due to a large deviation from the target on average, causing systematic errors
and leading to underfitting. Conversely, if the model is overly complex, the
high variance term takes over, causing it to fit random noise and leading to
overfitting. Our aim is therefore to select a model of proper complexity that
balances bias and variance, thereby minimizing the overall expected error.

In practice, it is often acceptable to tolerate a small increase in bias if it
yields a substantial decrease in variance. A notable example is Lasso regres-
sion, where we add an l1-norm penalty to the coefficients. While this penalty
introduces bias by shrinking some coefficients toward zero, it also reduces the
variance in the model’s predictions through more controlled coefficient magni-
tudes. As a result, the overall error can be significantly lower compared to an
unregularized model, demonstrating how a proper tradeoff between bias and
variance can enhance a model’s generalization performance.

2.2 Statistical Learning Theory

Statistical Learning Theory (SLT) is a fundamental branch of machine learn-
ing that provides a rigorous mathematical framework for understanding learn-
ing algorithms. Grounded in probability theory, statistical inference, and
functional analysis, it explores questions that clarify the capabilities and lim-
itations of predictive models, such as which learning tasks can be effectively
performed in practice and which are intrinsically beyond reach. SLT also inves-
tigates assumptions about data and underlying distributions that are needed
for successful learning, examining how algorithmic properties such as consis-
tency, convergence rates, and stability affect performance. Finally, it analyzes

Introduction to Statistical Learning Theory 35

theoretical bounds on the error rates and generalization capability of learning
algorithms, thereby offering crucial insights and theoretical guarantees into
how and why certain methods are effective in real-world applications. By for-
malizing the learning process, SLT facilitates the derivation of generalization
bounds, provides deeper insights into overfitting and underfitting, and informs
the development of key principles such as SRM and the bias-variance trade-
off. This theoretical foundation helps us better understand how to construct
models that generalize effectively while avoiding common pitfalls in practical
applications.

Let us start by reviewing the basic notations. Let X denote the input
space, which includes all possible instances or objects, and let Y denote the
output space, which encompasses all permissible labels or responses. In bi-
nary classification, we commonly set Y = {−1,+1}, so each input xi ∈ X is
assigned to one of two distinct classes.

In the supervised learning setting, our goal is to determine a mapping
function f : X → Y that can reliably map input to output. When dealing
with classification, such a function f is known as a classifier. Now, given a
training dataset

Dn = { (xi, yi)}ni=1,

where xi ∈ X and yi ∈ Y, we seek to learn a classifier f̂ (a predictive function)
that generalizes effectively to new, unseen data. A common way to quantify
this goal is to minimize the expected risk

R(f̂) = E(x,y)∼P

[
I
(
y 6= f̂(x)

)]
,

where I(·) denotes the indicator function, and P is the underlying data-
generating process (DGP) over X ×Y and is typically unobservable. By mini-

mizing this expected misclassification error, we strive to ensure that f̂ assigns
the correct labels to future instances with high probability.

2.2.1 A probabilistic framework

SLT adopts a probabilistic viewpoint, assuming that the training examples
(xi, yi)

n
i=1 are independently and identically distributed (i.i.d.) samples from

an unknown joint distribution P over X × Y .1 Formally, we write

(x1, y1), (x2, y2), . . . , (xn, yn)
i.i.d.∼ P.

The i.i.d. assumption is fundamental to deriving rigorous theoretical guar-
antees, such as generalization bounds, because it ensures that the observed
training data adequately reflect the underlying distribution.

Moreover, SLT does not impose parametric constraints on the underlying
DGP P . This means that SLT operates in a distribution-free setting, making

1The theoretical analysis in SLT becomes more challenging if the data is non-i.i.d.

36 Deep Learning Generalization

its results more general. Unlike conventional statistical methods that might
posit a specific functional form (e.g., Gaussianity or linearity), the SLT results
are valid for any DGP P . This broad applicability stems from the focus of SLT
on the properties of the hypothesis space F (which contains all possible forms
of a model in a given model class) and the learning algorithms themselves,
rather than the details of how the data are generated. In particular, it deals
with capacity control (e.g., VC dimension, Rademacher complexity) to analyze
generalization performance. As a result, the theoretical insights gained from
SLT can be applied to a wide variety of learning scenarios without making
restrictive assumptions about the data-generating process.

In addition to drawing samples from the joint distribution P on X × Y,
practical labels Y often exhibit inherent randomness relative to the inputs X .
That is, the mapping from an input x to its label y is not purely deterministic
but subject to stochastic variations that can arise from two principal sources.
First, label noise may creep in through errors during data collection or an-
notation, such as the occasional mislabeling of emails in a spam detection
system. Second, class overlap may occur in situations where different classes
are not clearly separable with limited feature dimensions, allowing multiple
labels to be plausibly assigned to the same input. An example is attempting
to infer gender solely from height, which naturally yields considerable overlap
and uncertainty.

This randomness of the label is captured by the conditional probability

η(x) = P
(
Y = +1

∣
∣ X = x

)
,

which quantifies the probability that a particular input x belongs to the posi-
tive class. When label noise is minimal or class distinctions are sharp, η(x) can
be close to 0 or 1. In contrast, significant noise or pronounced overlap could
drive η(x) closer to 0.5, indicating greater uncertainty and posing greater chal-
lenges in training accurate classifiers. Thus, to some extent, η(x) represents
the entropy on the randomness of this eventual outcome (the final label class),
and the learning system’s goal is to generate confident probabilistic predic-
tions whose entropy is low and the final prediction (once thresholded into a
binary number) is correct.

Another key assumption in SLT is that training examples are drawn inde-
pendently of the underlying distribution P . Independence implies that each
sample provides unique information about P , thus enabling effective tuning
and learning of the model parameters. In many real-world tasks, such as im-
age classification with broadly varied datasets, this assumption is often rea-
sonable. However, in certain domains, such as time series analysis or spatial
data modeling, the independence assumption may not hold because of tem-
poral or spatial correlations among data points. When such correlations exist,
additional methods or modified theoretical tools are required to account for
serial dependence in the data. In other words, SLT’s classical guarantees are
most directly applicable in scenarios where independent sampling is a valid
approximation.

Introduction to Statistical Learning Theory 37

Besides, a further assumption in classical SLT is that the distribution P
stays fixed and does not evolve over time. This stationarity condition under-
pins many of the standard theoretical results, ensuring that models trained
on past data remain valid in the future, thus allowing us to chase a fixed tar-
get. In practice, however, real-world data distributions often shift or drift—a
phenomenon known as concept drift—rendering the static assumption insuffi-
cient. As the distribution changes, a model that was once accurate can become
outdated, and the model needs to either get updated frequently or incorpo-
rate an online learning element in itself in such nonstationary environments.
For example, under covariate shift (changes in the distributions of predictive
features), certain aspects of the data may change while others remain stable,
making it challenging for models to deal with such dynamic distributions.

Lastly, the DGP P itself is presumed to be unknown during training. In
practice, the learner has access only to the finite sample of data drawn from
P , which serves as an empirical proxy for the true distribution. The primary
aim in SLT is therefore to leverage these finite samples to make inferences
about P and to build a classifier f̂ that generalizes effectively to new, unseen
data from the same source. Because this process relies on limited observations,
it is inherently probabilistic (thus not guaranteed), and SLT provides a set of
theoretical tools and bounds to assess the reliability of the inferred classifier in
a probabilistic sense. These tools help quantify the uncertainties and potential
errors in model predictions, ensuring that learning algorithms can be analyzed
and compared.

2.2.2 Loss functions in supervised learning

In supervised learning, our central task is to discover a predictive function
f : X → Y that accurately assigns the right labels y to the inputs x.2 To
measure how well this function performs, we rely on a loss function ℓ, which
specifies the cost of making a particular prediction ŷ for a given input x and
the corresponding target y. In binary classification, where Y = {−1,+1}, one
possible measure of effectiveness is the 0-1 loss:

ℓ
(
x, y, f(x)

)
=

{

1 if f(x) 6= y,

0 otherwise.

This loss imposes a penalty of 1 whenever the classifier mislabels x, thereby
directly reflecting the classification accuracy. However, due to its discontinu-
ous nature, the 0-1 loss is not amenable to standard optimization techniques
(e.g., gradient-based methods). To address this, we often replace the 0-1 loss
with a smooth surrogate such as the cross-entropy loss. In the binary setting
{−1,+1}, a common alternative formulation is the logistic (sigmoid-based)
cross-entropy:

ℓ
(
x, y, f(x)

)
= log

(
1 + e−y f(x)

)
.

2We use a general function f instead of f̂ as before.

38 Deep Learning Generalization

Here, f(x) can be interpreted as a real-valued predictive function (some-
times called the logit function) that maps input features in an unbounded
logit, and y ∈ {−1,+1}. Notably, log

(
1 + e−y f(x)

)
is differentiable with re-

spect to the parameters of f , thereby facilitating gradient-based optimization.
Moreover, from a probabilistic perspective, minimizing this cross-entropy loss
corresponds to maximizing the conditional likelihood of the observed labels
under a logistic model.

In regression problems, where the output space is R, the squared error loss
is a popular choice:

ℓ
(
x, y, f(x)

)
=
(
y − f(x)

)2
,

which penalizes the squared difference between the predicted and true values.
This encourages the model to produce more precise numerical estimates, as
any deviation from the target value is penalized quadratically. This means
that for model predictions with a large deviation, the resulting penalty will
be even higher due to the squaring effect compared to those with a small
deviation.

As with the previous section, building upon the notion of a loss function,
we define the risk function R(f) of a classifier f as the expected loss over the
entire data-generating distribution P :

R(f) = E(x,y)∼P

[

ℓ
(
x, y, f(x)

)]

.

Here, the expectation is taken with respect to all possible pairs (x, y)
drawn from the joint distribution P . Conceptually, R(f) captures how well f
is expected to perform on average across the full spectrum of inputs x and
their corresponding labels y. In practice, our goal is to choose a function f
from the available training set that minimizes the empirical risk Remp(f),
hoping that it will also perform well on unseen data (a small R(f)). Thus, we
are essentially approximating the true risk R(f) through the training samples
available.

Now we introduce the Bayes classifier fBayes to represent the theoretically
optimal classifier that achieves the lowest possible risk R∗ = minfR(f) for the
true distribution P . In a binary classification setting where Y = {−1,+1}, the
Bayes classifier is defined as

fBayes(x) :=

{

+1 if η(x) = P
(
Y = +1

∣
∣ x
)
≥ 0.5,

−1 otherwise.

Here, η(x) = P
(
Y = +1

∣
∣ x
)
denotes the conditional probability of the

positive class given x.
By always predicting the class based on the highest posterior probability,

the Bayes classifier minimizes the expected misclassification error, which is
often referred to as the Bayes risk under the 0-1 loss. For example, if η(x) =
0.9, the classifier assigns the label +1 because that choice has the highest
probability of being correct, while if η(x) = 0.4, it assigns the label −1.

Introduction to Statistical Learning Theory 39

Although this approach yields the theoretical optimum, it requires precise
knowledge of η(x) that needs to be accurately predicted using a predictive
model, which is rarely available in practice. Consequently, practical algorithms
strive to approximate fBayes as closely as possible using only the finite data
samples at hand.

Since the true distribution P is typically unknown, we know that it is
impossible to compute the Bayes classifier or the true risk R(f) directly. Con-
sequently, we resort to the empirical risk

Remp(f) =
1

n

n∑

i=1

ℓ
(
xi, yi, f(xi)

)
,

which is the average loss across the finite training set. Although the empirical
risk Remp(f) is only a proxy for the true risk, SLT provides a few methods to
approximate and bound the distance between the unknown true risk R(f) and
its empirical estimate Remp(f). Drawing on tools from probability theory and
statistical inference—such as concentration inequalities and uniform conver-
gence—SLT establishes generalization bounds that relate low empirical risk
to low true risk with high probability. These theoretical guarantees form the
backbone of effective machine-learning algorithms, ensuring that a model that
fits the training data well also achieves robust performance on novel, unseen
instances, thereby bridging the gap between the theoretical Bayes classifier
and the practical real-world classifier.

2.2.3 Consistency in STL

Within the framework of SLT, consistency emerges as a cornerstone property
that ensures the reliability of a learning algorithm when the number of training
samples becomes large. Formally, a learning algorithm is deemed consistent
if the risk of its learned classifier fn

3 converges to that of the Bayes classi-
fier fBayes—the theoretically best possible classifier—as n approaches infinity.
Mathematically, this can be expressed as

lim
n→∞

R(fn) = R
(
fBayes

)
,

where we recall that R(f) denotes the expected risk of a classifier f , given by

R(f) = E(x,y)∼P

[
ℓ
(
x, y, f(x)

)]
.

ℓ is a loss function, and P is the underlying data-generating distribution.
Consistency thus guarantees that, with sufficient data, the learned classifier fn
will asymptotically perform as well as the Bayes classifier in terms of expected
loss.

3We use the subscript n to denote the fact that the prediction model f is developed
based on a total of n training samples.

40 Deep Learning Generalization

To analyze how an algorithm’s performance evolves, we can consider a se-
quence of classifiers {fn} produced by the algorithm for increasing n. That
is, we are interested in the performance of the model under consideration as
the number of training samples grows. In more formal terms, we may also
distinguish between weak and strong consistency based on the mode of con-
vergence. Weak consistency requires convergence in probability, meaning for
every ǫ > 0,

lim
n→∞

P
(∣
∣R(fn)−R(fBayes)

∣
∣ > ǫ

)
= 0,

while strong consistency requires almost sure convergence:

P
(

lim
n→∞

R(fn) = R
(
fBayes

))

= 1.

Overall, whether the consistency is weak or strong, it can ensure that as
the training set grows, the algorithm can effectively leverage the increased
sample information, gradually reducing the gap between the learned classifier
performance and the theoretically optimal Bayes risk.

Achieving consistency depends on several interrelated factors associated
with the hypothesis space F and the learning process:

• Richness of the hypothesis space. The hypothesis space F must be suffi-
ciently expressive (i.e., big enough) to encapsulate or closely approximate
the Bayes classifier fBayes. Think of this relationship as constructing one
point (the predictive model) to be close to another underlying true point
that represents the model with Bayes risk. If F is overly constrained, for
example, a small circle that consists of only linear functions, yet the un-
derlying Bayes model is nonlinear and thus lives outside the circle (chosen
hypothesis space), the optimal risk may be unattainable. As a result, the
learned model cannot converge to the Bayes risk, thus failing to achieve
consistency.

• Property of uniform convergence. To ensure that learning remains reliable
for all functions in F , the empirical risk

Remp(f) =
1

n

n∑

i=1

ℓ
(
xi, yi, f(xi)

)

must converge uniformly to the true risk R(f) as n increases. This means
that |Remp(f)−R(f)| becomes small simultaneously for all f ∈ F with a
high probability:

sup
f∈F
|Remp(f)−R(f)| n→∞−−−−→ 0 with high probability.

This requirement typically leads us to control the complexity of F using
measures such as the Vapnik–Chervonenkis (VC) dimension (discussed
later). A lower VC dimension indicates a simpler (smaller) hypothesis

Introduction to Statistical Learning Theory 41

space and facilitates a more robust link between empirical and true risks.
In contrast, if F is too large, there may be insufficient data to accurately
estimate the performance of each hypothesis, thus hindering the conver-
gence to the Bayes risk.

• Proper regularization. Incorporating proper regularization helps manage
the balance between model complexity and fit to the training data. Math-
ematically, we do this by minimizing a regularized version of the empirical
risk of the form:

Lreg(θ) = Remp

(
fθ
)
+ λR(θ),

where R(θ) is a regularization term (e.g., ‖θ‖2 in Ridge regression) and
λ governs the penalty strength that balances the goodness of fit versus
complexity. Effective regularization prevents the learned classifier from
overfitting to idiosyncratic noise in the training set, helping align its per-
formance more closely with the Bayes optimal in the limit of large n. By
suitably tuning λ and the form of R(θ), both of which are choices of hyper-
parameters, we can encourage the learning process to focus on meaningful
structure in the data rather than irrelevant fluctuations, a key step in
achieving consistency.

To sum up, consistency ensures that, as the number of training samples
grows, the performance of the learning algorithm steadily improves until it
effectively matches that of the optimal Bayes classifier. In practical appli-
cations, this theoretical guarantee underlies why some models often exhibit
better generalization with increasing data in the training set. By reducing the
risk of the learned classifier R(fn) and gradually converging to the Bayes risk
R(fBayes), the consistency property provides a link between empirical results
and theoretical optimality. However, it does not reveal how rapidly R(fn) con-
verges to R(fBayes). The rate of convergence, which can be crucial when data
are limited or computational resources are constrained, is a central theme in
SLT’s study of finite sample complexity and generalization bounds, offering
more nuanced insights into the efficiency of learning algorithms.

2.2.4 Estimation–approximation trade-off

When analyzing the dynamics between empirical risk Remp(fn) and true risk
R(fn), it often helps to look at the estimation and approximation trade-off,
which captures the balance between the expressiveness of the hypothesis space
F and the ability of a learning algorithm to generalize from a finite training
set to new, unseen instances. Balancing these factors is crucial for construct-
ing models that not only fit the training data well but also maintain high
predictive accuracy on future samples.

Formally, suppose we choose a classifier fn ∈ F using a training set
{(xi, yi)}ni=1. Recall that our goal is to minimize the true risk R(fn) =

42 Deep Learning Generalization

E(x,y)∼P

[
ℓ
(
x, y, fn(x)

)]
, where ℓ is a loss function and P is the unknown joint

distribution over x and y. Since P is inaccessible, we approximate this objec-
tive by minimizing the empirical risk Remp(fn) = 1

n

∑n
i=1 ℓ

(
xi, yi, fn(xi)

)
.

When comparing the performance of fn to that of the Bayes classifier fBayes,
we can decompose this excess risk R(fn) − R

(
fBayes

)
4 as follows:

R(fn) − R
(
fBayes

)
=
(
R(fn) − R(F)

)

︸ ︷︷ ︸

Estimation Error

+
(
R(F) − R

(
fBayes

))

︸ ︷︷ ︸

Approximation Error

,

where
R(F) = inf

f ∈F
R(f)

is the minimal achievable risk within the prespecified hypothesis space F . The
estimation error R(fn) − R(F) reflects how well the learning algorithm uses
the available training samples to identify the best classifier in F , measured us-
ing the true risk. It tends to decrease as the training set grows large, provided
the complexity of F is controlled (e.g., via regularization or bounds on the VC
dimension). The approximation error R(F)−R(fBayes

)
arises if F cannot rep-

resent or approximate the Bayes classifier accurately due to limitations in the
function class, leading to irreducible bias from an overly restrictive hypothe-
sis space. Balancing these two error components—ensuring that F is neither
too small nor too large—lies at the heart of the estimation–approximation
trade-off.

More specifically, the estimation errorR(fn) − R(F) measures how closely
the learned classifier fn approaches the best possible classifier within the hy-
pothesis space F . Because we use only a finite training sample to identify fn,
the minimization of empirical risk may not perfectly recover the best model
within the model class in terms of true risk. Here, the complexity of F plays a
vital role in determining the size of this error: on the one hand, a sufficiently
rich F can approximate the Bayes classifier more closely, potentially reducing
approximation error; on the other hand, the same high capacity can inflate
estimation error by allowing overfitting to the training data, making it dif-
ficult to identify a model that gives R(F). Consequently, striking the right
balance in hypothesis space design—through regularization, model selection
criteria, or bounds on capacity—helps keep estimation error under control
while retaining enough flexibility to capture essential patterns in the data.

The approximation error R(F) − R
(
fBayes

)
captures how well the hypoth-

esis space F is able to represent and cover the Bayes classifier fBayes. Notably,
this gap arises solely from the expressive limitations of F and, unlike estima-
tion error, does not diminish with increasing sample size. A more constrained
hypothesis space may fail to capture intricate relationships required to mimic
fBayes, thus incurring a high approximation error. Conversely, enlarging F
can reduce approximation error but also risks elevating estimation error if the

4We put R(fn) in front since it is bigger than the true risk attained by the global
minimizer fBayes .

Introduction to Statistical Learning Theory 43

model overfits the training data. Thus, controlling approximation error relies
on selecting or designing a hypothesis space that is both sufficiently flexible
to capture key patterns in the data and not so expansive as to degrade overall
generalization.

The estimation–approximation trade-off thus characterizes the interplay
between these two error components. Expanding the complexity of the hy-
pothesis space F typically lowers approximation error by allowing the model
to capture the true data-generating process more precisely. Nevertheless, an
overly rich F can inflate estimation error because the model may overfit the
limited training data, inadvertently memorizing noise rather than learning
generalizable patterns. Conversely, restricting F can control overfitting and
reduce estimation error but risks increasing approximation error if the smaller
space cannot adequately cover the Bayes classifier. Balancing these concerns
is a central focus in model selection and regularization, where the goal is
to identify a hypothesis space that is simultaneously flexible enough to ap-
proximate the true distribution and sufficiently constrained to avoid excessive
variance.

Such a trade-off is crucial for ensuring that the risk of the learned classifier
converges to the Bayes risk in the limit of large sample sizes, obtaining the con-
sistency property. If the hypothesis space F is excessively large—encompassing
all manifestations of complex functions—it can fail to deliver consistency,
meaning R(fn) may not approach R(fBayes) as n→∞. This issue often stems
from the increased possibility of overfitting and the difficulty of uniformly ap-
proximating the true risk when F is extremely rich. Conversely, if F is too
restrictive, the approximation error becomes too big, preventing the learned
classifier from ever covering the Bayes classifier. Hence, selecting a hypothesis
space with the right balance of expressive power and regularization is funda-
mental to securing both the flexibility needed to capture critical structures in
the data and the consistency required for generalization.

Figure 2.1 illustrates the tradeoff between approximation and estimation
error. In particular, when we minimize the empirical risk over a finite train-
ing set, we obtain a classifier femp. Although femp can match the training
data closely, it may be prone to overfitting, hence diverging from the ideal
solution measured using the true risk. Meanwhile, the best-in-class model fF
is constrained by the expressive capacity of the chosen hypothesis space F ,
determining how effectively it can approximate the Bayes classifier fBayes. In
this case, no matter how we optimize over the training data, the intrinsic
limitations of F fix the gap between fF and fBayes. Consequently, there is
a balance to be struck: while enlarging F can reduce approximation error,
doing so risks inflating estimation error if femp becomes overly tuned to the
idiosyncrasies (coupled with noise) of the training set.

This estimation–approximation tradeoff also aligns closely with the classi-
cal bias-variance tradeoff in the previous section. Roughly speaking, the ap-
proximation error in the estimation–approximation perspective corresponds
to bias aspect in the bias-variance paradigm: high bias arises when the

44 Deep Learning Generalization

FIGURE 2.1
Illustrating the approximation and estimation error.

hypothesis space is too limited to fully capture the underlying data structure,
resulting in underfitting. Meanwhile, the estimation error parallels variance:
high variance implies that the model is overly sensitive to fluctuations in the
training set, thus overfitting and failing to generalize. Recognizing this dual-
ity is helpful for guiding both the theoretical analysis and practical design of
learning algorithms, as it underscores that any move to reduce bias (or ap-
proximation error) by enlarging the hypothesis space must be balanced against
the potential for increased variance (or estimation error), unless appropriate
regularization is applied.

As illustrated in Figure 2.2, the interplay between estimation error and
approximation error becomes evident when varying the size (or complexity)
of the hypothesis class. If the hypothesis space is constrained to be small, the
chosen model class may be too limited to learn the intrinsic patterns in the
data, resulting in underfitting. In this regime, approximation error dominates
because the model cannot capture essential structures, while the estimation
error can remain relatively small due to lower variance in fitting a simpler
function class. Conversely, if the hypothesis class is extremely rich and big,
the model can nearly match even intricate data relationships, thus reducing
approximation error. However, this expressive power also heightens the like-
lihood of overfitting, causing estimation error to grow as the model becomes
highly sensitive to idiosyncrasies in the training data. Striking a balance be-
tween these two extremes—managing the flexibility of the model while pre-
venting undue variance—lies at the core of developing robust, generalizable
learning systems.

Introduction to Statistical Learning Theory 45

FIGURE 2.2
Illustrating the tradeoff between approximation and estimation error.

Thus, achieving a low total error (in terms of the true risk) necessi-
tates a balance in which the hypothesis space is sufficiently expressive to
reduce bias (or approximation error), yet not so expansive that the model
becomes vulnerable to large variance (or estimation error). Strategies such as
regularization and model selection criteria—notably SRM—are key tools in
SLT that help navigate this trade-off effectively. In particular, selecting an
appropriately sized and structured hypothesis space F is an important deci-
sion. An overly large F can contain models complex enough to perfectly fit the
training data yet fail to generalize, driving up estimation error due to overfit-
ting. Conversely, if F is too restricted, it cannot capture the true patterns in
the data, leading to pronounced approximation error. By carefully calibrating
the flexibility of F , one seeks to strike the sweet spot where both errors are
sufficiently controlled, thereby achieving robust generalization.

To help navigate the estimation–approximation trade-off, regularization
methods restrict the complexity of learned classifiers, thus controlling the es-
timation error without excessively increasing the approximation error. For
example, we can vary the complexity of the hypothesis space F and select the
model that demonstrates the most promising generalization performance on
the training data. By decomposing the risk into estimation and approxima-
tion components, SLT offers a clear framework for analyzing how the choices
of hypothesis space and learning strategies influence the ultimate performance

46 Deep Learning Generalization

of the classifiers. Properly managing this trade-off is critical for minimizing
overall risk and securing consistency, wherein the classifier’s expected risk
converges to that of the Bayes optimal solution given sufficiently large sam-
ple sizes. Consequently, SLT not only illuminates why particular algorithms
generalize well or poorly but also guides the design of methods that balance
complexity and parsimony to achieve reliable, data-driven learning.

2.2.5 Empirical risk minimization

In the basic supervised learning setup, we have a training dataset {(xi, yi)}ni=1,
where each input xi ∈ X is paired with an output yi ∈ Y. Our task is to learn
a classifier f : X → Y that minimizes the true risk:

R(f) = E
[
ℓ
(
x, y, f(x)

)]
,

where ℓ is a loss function that measures how far the prediction f(x) deviates
from the true label y. Since the underlying distribution P (X,Y) is unknown,
we cannot compute R(f) directly.

Instead, the principle of Empirical Risk Minimization (ERM) tackles this
difficulty by substituting the true risk R(f) with the empirical risk Remp(f) as
the proxy,5 which is the average loss computed over the given training data:

Remp(f) =
1

n

n∑

i=1

ℓ
(
xi, yi, f(xi)

)
.

In accordance with ERM, we then define our learned classifier fn as the
function (the best model measured in terms of empirical risk) in the hypothesis
space F that minimizes this empirical risk:

fn := arg min
f ∈F

Remp(f).

Here, F represents the set of candidate classifiers we allow ourselves to
consider, which can range from simpler, more constrained families to highly
flexible function classes. By choosing fn to minimize Remp(f), we aim to
approximate the best possible classifier under P , even though we can only
access a finite sample from that distribution.

The principle behind ERM finds a key theoretical underpinning in the
Law of Large Numbers (LLN), a cornerstone of probability theory. The LLN
states that, given a set of i.i.d. random variables {ξi}ni=1, their sample average
converges to the expected value (the first moment of P (ξ)) as n grows large:

1

n

n∑

i=1

ξi −→ E[ξ] as n→∞.

5In practice, we further divide the available data into training, validation, and testing,
with the latter two serving as the proxy for true risk.

Introduction to Statistical Learning Theory 47

In the ERM framework, we treat the empirical risk Remp(f) as the sample
average of the losses ℓ(xi, yi, f(xi)) for all instances i ∈ {1, . . . , n}. For any
fixed classifier f , the LLN ensures that

Remp(f) =
1

n

n∑

i=1

ℓ
(
xi, yi, f(xi)

)
−→ E

[
ℓ(x, y, f(x)

]
= R(f) as n→∞.

Thus, for sufficiently large n, the empirical risk Remp(f) becomes a good
approximation of the true risk R(f) for that particular f . Indeed, when ex-
posed to all possible variations of training data, the model should be able to
interpolate perfectly and recover the true underlying model with Bayes risk.
This convergence property ensures that minimizing Remp(f) can effectively
approximate minimizing R(f), provided that the hypothesis f is not overly
complex and the sample size is substantial.

To evaluate the effectiveness of using the empirical risk Remp(f) as an
estimator of the true risk R(f) for a fixed classifier f , we can invoke classi-
cal concentration results like Hoeffding’s inequality. Specifically, suppose the
loss values ℓ(xi, yi, f(xi)) are bounded in the interval [0, 1]. Then, Hoeffding’s
inequality states that for any ǫ > 0,

P
(∣
∣Remp(f)−R(f)

∣
∣ ≥ ǫ

)

≤ 2 exp
(
−2n ǫ2

)
,

implying that the likelihood of Remp(f) deviating from R(f) by more than
ǫ vanishes exponentially fast with increasing sample size n. Concretely, for
sufficiently large n, the empirical risk Remp(f) offers a good approximation of
the true risk R(f) with high probability. This exponential convergence rate is
a key theoretical reason why optimizing the empirical risk can yield reliable
results in practice, provided the classifier remains fixed during the analysis
and the training set is large enough.

A significant complication emerges when we try to apply Hoeffding’s in-
equality to ERM: the selected classifier fn depends on the training data itself.
In contrast to a fixed, data-independent classifier, fn is specifically optimized
to minimize the empirical risk on the observed training samples, thereby vio-
lating the independence assumption crucial to concentration inequalities like
Hoeffding’s. Consequently, although such inequalities assure us that the em-
pirical and true risks align closely for any single, fixed classifier, they do not
automatically carry over to the data-dependent classifier fn.

This gap can also manifest itself in overfitting, where the empirical risk
Remp(fn) could be deceptively small, but the true risk R(fn) is substantially
larger. Thus, while ERM strives to choose a classifier that appears optimal
based on the training set, the data dependence of fn introduces subtleties
that require more refined theoretical tools. Subsequent chapters address these
issues in detail, examining how regularization, SRM, and other advanced tech-
niques help ensure that the ERM framework remains consistent and avoids
pitfalls such as overfitting, ultimately supporting robust and generalizable
machine-learning models.

48 Deep Learning Generalization

FIGURE 2.3
Convergence of empirical risk to actual risk.

2.2.6 Uniform convergence

To ensure that ERM is consistent, we must place additional constraints on
the hypothesis space F . The fundamental insight from the VC theory is that
ERM’s consistency hinges on the worst-case performance6 across all classifiers
f ∈ F that the learning algorithm might pick. This leads to a more rigor-
ous variant of the LLN, the Uniform Law of Large Numbers (ULLN), which
ensures that the empirical risk converges uniformly to the true risk over the
entire hypothesis space.

In Figure 2.3, we see a schematic showing how the empirical risk converges
to the true risk as the number of training samples increases. The x-axis repre-
sents a simplified, one-dimensional projection of F . Each point along this axis
corresponds to a distinct function, which might be a random function f , the
empirical risk minimizer fn, or the best classifier fF within F . If the global
Bayes classifier fBayes belongs to F , then fF = fBayes. Otherwise, F merely
contains an approximation to the optimal solution. By enforcing conditions
such as the finite VC dimension or other capacity constraints, we can apply
ULLN to show that, as the training sample size grows, the empirical risks
of all functions in F converge to their respective true risks. Consequently,
the empirical minimizer fn will, with high probability, be close to the best

6We note that this principle plays a similar role as in robust optimization.

Introduction to Statistical Learning Theory 49

possible classifier fF in F . This uniform convergence property underlies the
consistency of ERM, enabling it to yield classifiers whose performance steadily
approaches that of the best realizable classifier in the hypothesis class as more
data become available.

As depicted, we have two curves representing the true risk R and the
empirical risk Remp. The classifier fn that minimizes Remp is generally distinct
from fF , the minimizer of the true risk within the hypothesis space F . For
any specific classifier f ∈ F , we use the gap

∣
∣R(f)−Remp(f)

∣
∣ to reflect how

well the empirical risk approximates the true risk for f .
Now, the standard LLN guarantees that, for a fixed f , Remp(f) converges

to R(f) as n grows. However, this does not ensure that every function in F
simultaneously achieves the same level of convergence. To achieve uniform
convergence across all hypotheses in F , we can resort to ULLN, which states
that for any ǫ > 0, there exists a sufficiently large n such that

P
(

sup
f∈F

∣
∣R(f)−Remp(f)

∣
∣ ≥ ǫ

)

−→ 0 as n→∞.

This property says that, with high probability, all functions in F exhibit a
negligible gap between their empirical and true risks once n is large enough.
Such property is critical to establish that empirical minimization leads to a
classifier fn whose risk closely approximates the true minimizer fF in F , thus
facilitating the consistency of empirical minimization.

To elaborate on the details of establishing the consistency of ERM using
ULLN, let us consider the difference between the true risk of the classifier se-
lected by ERM, fn, and the true risk of the best classifier within the hypothesis
space F , denoted fF . This difference is given by

R(fn)−R(fF).

Because fF minimizes the true risk over F , we have R(fn) ≥ R(fF),
ensuring that the difference is nonnegative. To analyze this excess risk further,
we add and subtract the corresponding empirical risks, yielding

R(fn)−R(fF) =
[

R(fn)−Remp(fn)
]

+
[

Remp(fn)−Remp(fF)
]

+
[

Remp(fF)−R(fF)
]

.

Since fn is chosen to minimize the empirical risk over F , it follows that
Remp(fn) ≤ Remp(fF),

which implies that the middle term satisfies

Remp(fn)−Remp(fF) ≤ 0.

Thus, we can bound the excess risk by

R(fn)−R(fF) ≤
[

R(fn)−Remp(fn)
]

+
[

Remp(fF)−R(fF)
]

.

50 Deep Learning Generalization

By the ULLN, for any ǫ > 0, there exists a sufficiently large sample size n
such that, with high probability,

sup
f∈F
|R(f)−Remp(f)| ≤ ǫ.

This uniform bound immediately implies that

R(fn)−Remp(fn) ≤ ǫ and Remp(fF)−R(fF) ≤ ǫ.

Substituting these inequalities into our bound on the excess risk, we obtain

R(fn)−R(fF) ≤ ǫ+ ǫ = 2ǫ.

Now, let us introduce a threshold δ > 0 and set δ = 2ǫ. Then, the above
bound implies that if the uniform convergence holds at the level ǫ = δ/2, we
have

R(fn)−R(fF) < δ.

The key statement we now incorporate is as follows: if, on the other hand,
we observe that

R(fn)−R(fF) ≥ δ,

then necessarily

sup
f∈F

∣
∣R(f)−Remp(f)

∣
∣ ≥ δ

2
.

In words, a large excess risk (at least δ) can occur only if the uniform
deviation between true and empirical risks over F is at least δ/2.

Since event {R(fn)−R(fF) ≥ δ} is a subset of the event {supf∈F

∣
∣R(f)−

Remp(f)
∣
∣ ≥ δ

2}, we know that the probability of the former cannot exceed the
probability of the latter, thus giving:

P
(

R(fn)−R(fF) ≥ δ
)

≤ P
(

sup
f∈F

∣
∣R(f)−Remp(f)

∣
∣ ≥ δ

2

)

.

Since the left-hand side is a nonnegative quantity by definition, we can
also write

P
(∣
∣R(fn)−R(fF)

∣
∣ ≥ δ

)

≤ P
(

sup
f∈F

∣
∣R(f)−Remp(f)

∣
∣ ≥ δ

2

)

.

As the sample size n increases, the ULLN ensures that the probability
on the right-hand side becomes arbitrarily small. Hence, the probability that
the excess risk exceeds δ also becomes negligible. Therefore, the determinis-
tic bound on the excess risk, together with the uniform convergence guaran-
tee provided by the ULLN, leads directly to the probabilistic bound, which
demonstrates that the excess risk of the ERM-selected classifier diminishes
with increasing sample size, thereby establishing the consistency of ERM. In
other words, the true risk of the classifier selected by ERM converges to the

Introduction to Statistical Learning Theory 51

risk of the best possible classifier within F . This result establishes the consis-
tency of ERM, as it guarantees that, with enough data, the performance of
the ERM-selected classifier will approach that of the optimal classifier in the
hypothesis space.

2.3 Capacity Measures of Functional Class

So far, we have examined the properties of the function space that determine
the consistency of the ERM principle, particularly focusing on whether it will
eventually work “in the limit” as the number of training samples grows to in-
finity. As discussed earlier, this long-term behavior is captured by the concept
of uniform convergence, which guarantees that the empirical risk converges
uniformly to the true risk across the entire hypothesis space. However, since
we invariably operate with a finite set of data points in practice, it becomes
crucial to look at how uniform convergence manifests in finite-sample scenar-
ios. This deeper exploration not only enables us to derive precise bounds on the
excess risk incurred by the learned classifier but also offers valuable insights
into the intrinsic characteristics of function classes, such as their complexity
measures like the VC dimension, that promote uniform convergence. Under-
standing these properties is essential for designing and selecting hypothesis
spaces that effectively balance complexity and generalization, ensuring that
the empirical performance reliably reflects the true risk even with a limited
amount of data.

To better analyze how well the empirical risk approximates the true risk
uniformly over the entire hypothesis space F , we begin by considering the
worst-case probability

P
(

sup
f∈F

∣
∣R(f)−Remp(f)

∣
∣ > ǫ

)

.

This expression measures the likelihood that there exists at least one func-
tion f in F for which the difference between the true risk R(f) and the empir-
ical risk Remp(f) exceeds a small threshold ǫ. In other words, it quantifies the
worst-case deviation across all classifiers, a key component in understanding
uniform convergence.

To effectively bound this probability, we can employ two essential analyti-
cal tools. First, we can use the union bound, which allows us to break down the
probability over the entire (possibly infinite) collection of functions into a sum
of probabilities for individual events. This decomposition makes the overall
bound more tractable. Second, we leverage the method of symmetrization by
introducing a ghost sample, a separate set of data drawn independently from
the same distribution. This technique transforms the problem by replacing
the complex dependency structure of the original sample with a symmetrized

52 Deep Learning Generalization

version, thereby facilitating tighter and more manageable probabilistic esti-
mates.

Together, these methods enable us to derive meaningful finite-sample guar-
antees on the uniform convergence of the empirical risk to the true risk, which
are crucial for understanding the generalization properties of learning algo-
rithms operating under the ERM framework.

Let us start with the union bound.

2.3.1 Union bound for finite function classes

The union bound is a straightforward yet powerful tool that enables us
to extend the standard LLN from individual functions to a ULLN over
a finite set of functions. To illustrate, consider a finite hypothesis space
F = {f1, f2, . . . , fm}. For each function fi ∈ F , we can apply the standard
LLN in the form of the Chernoff bound, which guarantees that

P
(

|R(fi)−Remp(fi)| ≥ ǫ
)

≤ 2 exp(−2nǫ2).

Our objective is to extend these individual concentration bounds to obtain
a uniform bound over the entire set F . To do this, note that the event

{

sup
f∈F
|R(f)−Remp(f)| ≥ ǫ

}

occurs if and only if there exists at least one function fi in F for which
|R(fi)−Remp(fi)| ≥ ǫ. By the union bound, we have:

P
(

sup
f∈F
|R(f)−Remp(f)| ≥ ǫ

)

= P
(m⋃

i=1

{
|R(fi)−Remp(fi)| ≥ ǫ

})

≤
m∑

i=1

P
(

|R(fi)−Remp(fi)| ≥ ǫ
)

.

Substituting the Chernoff bound for each term in the sum yields

m∑

i=1

P
(

|R(fi)−Remp(fi)| ≥ ǫ
)

≤ 2m exp(−2nǫ2).

This inequality effectively transforms individual concentration bounds into
a uniform concentration bound in the finite function class F . The factor m
here represents the size, or capacity, of the hypothesis space; if F is fixed and
finite, m is a constant. Consequently, as the sample size n increases, the term
2m exp(−2nǫ2) decays exponentially to zero. This rapid decay ensures that
the empirical risk Remp(f) uniformly converges to the true risk R(f) for all
functions in F .

Introduction to Statistical Learning Theory 53

In summary, by applying the union bound together with the Chernoff
bound, we obtain a uniform concentration inequality that guarantees, with
high probability, the maximum deviation between the empirical and true risks
over F becomes arbitrarily small as n grows. This uniform convergence is
fundamental to establishing the consistency of ERM over a finite function
class. In particular, it implies that the ERM-selected classifier fn converges to
the best classifier fF in terms of true risk as n→∞, ensuring that the learning
algorithm performs reliably even when only a finite number of training samples
is available.

2.3.2 Extending beyond finite function classes

While the union bound offers an elegant and effective solution for finite func-
tion classes, many real-world learning problems involve infinite or exceedingly
large hypothesis spaces. In such cases, the straightforward application of the
union bound would lead to an exponential dependence on the size of the
function class m, which is impractical when m is infinite. Obviously, simply
using m fails to present a meaningful bound when it tends toward infinity.
To circumvent this issue, we need additional analytical techniques to replace
the combinatorial factor m with more refined and tractable measures of ca-
pacity. One influential approach, introduced by Vapnik and Chervonenkis,
leverages the concept of a ghost sample to extend these uniform convergence
results to infinite function classes. This method allows us to substitute the
raw count m with alternative capacity measures, such as the VC dimension
or the covering numbers, that effectively quantify the “size” or “complexity”
of the function class to a finite number, even when the function class itself is
unbounded.

A central technique in this framework is known as symmetrization, which
proceeds by incorporating a ghost sample. Suppose that we are given a set
of training samples {(xi, yi)}ni=1, where each (xi, yi) is drawn independently
of the underlying distribution P . To facilitate symmetrization, we introduce
an i.i.d. ghost sample set {(x′

i, y
′
i)}ni=1, drawn from the same distribution P

and independent of the original sample. This ghost sample is a theoretical
construct used solely for analysis; in practice, there is no need to generate it
physically. By comparing the empirical risks computed on these two indepen-
dent samples, symmetrization allows us to derive uniform convergence bounds
that hold over the entire (potentially infinite) function class F .

The introduction of ghost samples and the application of symmetrization
enable us to move beyond the limitations of the union bound when dealing
with infinite function classes. By replacing the combinatorial dependence on
m with more nuanced capacity measures, these techniques provide guarantees
of uniform convergence, which, in turn, underpin the consistency and gener-
alization performance of learning algorithms operating over rich hypothesis
spaces.

54 Deep Learning Generalization

Using the ghost sample, we define the empirical risk on this additional
sample set as

R′
emp(f) =

1

n

n∑

i=1

ℓ(x′
i, y

′
i, f(x

′
i)).

This construct is valuable because it allows us to replace the unobservable
true risk R(f) with a comparison between two empirical risks, Remp(f) and
R′

emp(f), both of which can be calculated directly from the data. We can then
think of a way to connect the excess risk between R(f) and Remp(f) with the
new excess risk between Remp(f) and R′

emp(f). Since both the original sample
{(xi, yi)}ni=1 and the ghost sample {(x′

i, y
′
i)}ni=1 are drawn independently from

the same distribution P , they serve as two independent estimators of the true
risk. This is crucial because ULLN ensures that each of these empirical risks
converges to R(f) as the sample size increases.

The power of the ghost sample is fully realized in the following Symmetriza-
tion Lemma. For any ǫ > 0, the lemma states that

P

(

sup
f∈F

∣
∣R(f)−Remp(f)

∣
∣ > ǫ

)

≤ 2P

(

sup
f∈F

∣
∣Remp(f)−R′

emp(f)
∣
∣ >

ǫ

2

)

.

In this inequality, the probability on the left-hand side is taken with re-
spect to the distribution of the original sample, while the probability on the
right-hand side considers the joint distribution of both the original sample
and the ghost sample. Essentially, the lemma tells us that the worst-case de-
viation between the true risk and the empirical risk over the function class
F can be bounded by twice the probability that the difference between two
independently computed empirical risks exceeds ǫ/2.

This result stands because the ghost sample, by virtue of being an indepen-
dent draw from the same distribution P , mirrors the behavior of the true risk
in expectation. Consequently, any substantial deviation between the empirical
risk and the true risk must be reflected in the discrepancy between the two
independent empirical estimates. Thus, by controlling the latter, we obtain a
uniform bound on the former. This symmetrization technique transforms the
challenge of bounding the unobservable true risk into a problem of analyzing
the difference between two computable quantities using the available train-
ing set, thus providing a powerful tool for establishing uniform convergence
results even when the function class F is infinite.

The symmetrization lemma becomes intuitive once we observe that both
Remp(f) and R′

emp(f) serve as unbiased estimators of the true risk R(f). Since
the original and ghost samples are independently drawn, the difference in the
empirical risk, expressed as

Remp(f)−R′
emp(f)

captures the inherent variability in the empirical estimation process. Intu-
itively, if the empirical risks computed from two independent samples are

Introduction to Statistical Learning Theory 55

close for every function f ∈ F , it strongly suggests that both estimates are
also close to the unobservable true risk R(f). This observation is the corner-
stone that allows us to bound the excess risk |R(f)−Remp(f)|.

While a full proof is beyond our current scope, the essence of the sym-
metrization lemma can be grasped through standard symmetrization tech-
niques in probability theory, notably the use of Rademacher variables. To
outline the approach, we can introduce a sequence of independent Rademacher
random variables {σi}ni=1, each taking the value +1 or −1 with probability
0.5. With these variables, the difference between the two empirical risks can
be re-expressed as

Remp(f)−R′
emp(f) =

1

n

n∑

i=1

σi [ℓ(xi, yi, f(xi))− ℓ(x′
i, y

′
i, f(x

′
i))] .

This re-expressed formulation makes sense since multiplying each differ-
ence by σi essentially randomizes the signs of these differences and does not
change the distribution due to symmetry. The properties of Rademacher vari-
ables, combined with concentration inequalities, enable us to relate the prob-
ability of large deviations in the original empirical process to that of the
symmetrized process. In effect, this transformation reduces the problem of
bounding

sup
f∈F
|R(f)−Remp(f)|

which depends on the unobservable true risk R(f), to a problem involving only
observable empirical quantities computed on the original and ghost samples.

Furthermore, the lemma implies that when analyzing an infinite hypothesis
class F , one can effectively limit the analysis to a finite set of distinct function
behaviors on a combined sample of size 2n. In particular, since each function
in F assigns a label to each of the 2n instances, there are at most 22n distinct
patterns that the functions can produce. This finite combinatorial bound on
the number of distinct behaviors allows us to replace the raw capacity size
m in the union bound with more sophisticated capacity measures such as the
VC dimension or covering numbers, which remain applicable even when F is
infinite. Ultimately, by relating the uniform deviation between the true and
empirical risks to the deviation between two independent empirical estimates,
the symmetrization lemma provides a powerful pathway to establish uniform
convergence and, hence, the consistency of learning algorithms under ERM.

2.3.3 Shattering coefficient

To quantify the capacity of the function class F and derive meaningful gen-
eralization bounds, we can rely on a combinatorial measure known as the
shattering coefficient. For a given sample Z = {x1,x2, . . . ,xn}, let FZ denote
the set of distinct mappings of the functions in F to the sample Z; that is,
two functions f, g ∈ F are considered distinct on Z if there exists at least one

56 Deep Learning Generalization

point xi ∈ Z such that f(xi) 6= g(xi). The shattering coefficient N (F , n) is
then defined as the maximum number of distinct functions (or equivalently,
distinct labels) that F can achieve over any sample of size n:

N (F , n) = max
Z⊂X ,|Z|=n

|FZ |.

In other words, the shattering coefficient N (F , n) measures the maximum
number of distinct dichotomies (i.e., ways to assign labels) that the function
class F can produce on any set of n points. This definition captures the rich-
ness or complexity of F ; for example, if N (F , n) = 2n, it indicates that F is
capable of identifying all possible 2n binary labels (as 1 or 0) in some sample
of size n, meaning that F shatters that sample. A higher shattering coeffi-
cient thus suggests a more complex function class that can represent a larger
variety of patterns, though at the potential cost of overfitting, while a lower
shattering coefficient indicates a simpler hypothesis space with possibly better
generalization but a reduced capacity to fit complex data. Consequently, the
shattering coefficient provides a critical tool for bounding the growth of the
function class with respect to the sample size and plays a central role in es-
tablishing uniform convergence results and generalization bounds in learning
theory.

The shattering coefficient and the VC dimension provide a combinatorial
measure of complexity that comes in handy when bounding the generaliza-
tion error. In many uniform convergence results, the growth of the shattering
coefficient with respect to n appears in the upper bounds for the difference
between the empirical risk and the true risk. For example, if the shattering co-
efficient grows polynomially with n, then one can often derive tighter bounds
on the uniform deviation than if it were exponential. This insight helps to
explain why models with excessively high complexity (i.e., a very large shat-
tering coefficient) may overfit the training data, leading to poor generalization
performance.

Returning to our goal of bounding the probability

P

(

sup
f∈F
|R(f)−Remp(f)| > ǫ

)

,

We note that even though the function class F may be infinite, when con-
sidering a combined sample of size 2n only a finite subset of distinct functions,
denoted by FZ2n , is relevant. Here, FZ2n represents the set of distinct classi-
fications that functions in F can exhibit on the combined sample Z2n. This
observation allows us to simplify the analysis and obtain the bound

P

(

sup
f∈F
|R(f)−Remp(f)| > ǫ

)

≤ 2P

(

sup
f∈FZ2n

|Remp(f)−R′
emp(f)| >

ǫ

2

)

,

where R′
emp(f) is the empirical risk calculated on an independent ghost sample

of size n.

Introduction to Statistical Learning Theory 57

For each fixed function f ∈ FZ2n , assuming that the loss function ℓ is
bounded within [0, 1], the difference Remp(f) − R′

emp(f) consists of indepen-
dent random variables bounded in the interval [−1, 1]. Applying Hoeffding’s
inequality to each such function, we have

P
(

|Remp(f)−R′
emp(f)| >

ǫ

2

)

≤ 2 exp

(

− 2
(
ǫ
2

)2
n

(1− (−1))2

)

= 2 exp

(

−nǫ2

8

)

.

Next, by applying the union bound over all functions in FZ2n , we obtain

P

(

sup
f∈FZ2n

|Remp(f)−R′
emp(f)| >

ǫ

2

)

≤ 2N (F , 2n) exp
(

−nǫ2

8

)

,

where N (F , 2n) is the shattering coefficient, representing the maximum num-
ber of distinct functions that F can produce on any sample of size 2n.

Integrating this bound with the symmetrization lemma, we arrive at

P

(

sup
f∈F
|R(f)−Remp(f)| > ǫ

)

≤ 2× 2N (F , 2n) exp
(

−nǫ2

8

)

= 4N (F , 2n) exp
(

−nǫ2

8

)

.

This final bound indicates that, as the sample size n increases, the prob-
ability that the uniform deviation between the true risk and the empirical
risk exceeds ǫ decays exponentially, provided that the shattering coefficient
N (F , 2n) does not grow too rapidly (e.g., if it grows polynomially with n).
This exponential decay is fundamental to establish the consistency of ERM,
ensuring that the empirical risk minimizer fn converges to the best-in-class
risk minimizer fF in F as n→∞.

To illustrate this with an example, consider the class of linear classifiers in
R

d:
F = {fw(x) = sign(w⊤x) | w ∈ R

d}.
For this function class, the shattering coefficient can be bounded by

N (F , n) ≤
d∑

k=0

(
n

k

)

≤ nd.

This polynomial growth in n contrasts sharply with the exponential growth
2n that would occur if all possible labels were realizable. Consequently, the
probability bound for this example becomes

P

(

sup
f∈F
|R(f)−Remp(f)| > ǫ

)

≤ 4n2d exp

(

−nǫ2

8

)

,

which still decays exponentially with n for any fixed dimension d. This bound
underscores how controlling the capacity of the function class through the
shattering coefficient is essential to ensure that ERM generalizes well from
finite samples to the underlying distribution.

58 Deep Learning Generalization

2.3.4 Different function classes

Now we examine how different growth rates of the shattering coefficient
N (F , n) influence the consistency of ERM by considering various function
classes characterized by distinct shattering behaviors and discussing their im-
plications for uniform convergence and generalization.

For example, consider function classes where the shattering coefficient
grows sub-polynomially with the sample size n. Examples of such classes
include certain regularized linear models or simple decision trees with bounded
depth, for which we might have

N (F , n) ≤ logk(n) for some constant k.

Substituting this bound into our previously derived inequality

P

(

sup
f∈F
|R(f)−Remp(f)| > ǫ

)

≤ 4N (F , 2n) exp
(

−nǫ2

8

)

,

we obtain

P

(

sup
f∈F
|R(f)−Remp(f)| > ǫ

)

≤ 4 logk(2n) exp

(

−nǫ2

8

)

.

Because logk(2n) grows very slowly compared to the exponential decay

exp
(

−nǫ2

8

)

, as n increases the exponential term dominates. This ensures that

the entire expression tends to zero rapidly. In this case, not only is ERM
consistent, but the convergence is very fast: the probability that the supremum
deviation exceeds ǫ vanishes rapidly as the sample size grows, guaranteeing a
reliable generalization.

Next, consider function classes with a linear growth of the shattering co-
efficient, such as certain kernel-based methods with fixed kernel parameters.
For these classes, one can often establish a bound of the form

N (F , n) ≤ c n for some constant c.

Substituting this into the same inequality yields

P

(

sup
f∈F

|R(f)−Remp(f)| > ǫ

)

≤ 4N (F , 2n) exp

(

−
nǫ2

8

)

≤ 4 c (2n) exp

(

−
nǫ2

8

)

,

which simplifies to

P

(

sup
f∈F
|R(f)−Remp(f)| > ǫ

)

≤ 8c n exp

(

−nǫ2

8

)

.

Although the term 8c n grows linearly with n, the exponential decay

exp
(

−nǫ2

8

)

still dominates for large n. Thus, as the sample size increases,

Introduction to Statistical Learning Theory 59

the overall bound tends to zero, albeit at a slower rate compared to the sub-
polynomial case. Nonetheless, ERM remains consistent for function classes
with linear shattering coefficients, with the probability of the supremum de-
viation exceeding ǫ decreasing exponentially fast.

In both cases, the growth rate of the shattering coefficient is pivotal for
determining the rate at which uniform convergence occurs. For function classes
with sub-polynomial growth, the exponential decay in the probability bound is
even more pronounced, leading to rapid convergence and strong generalization.
For classes with linear growth, while the convergence is still exponential, the
rate is somewhat moderated by the linear factor. However, the key takeaway
here is that as long as the shattering coefficient does not grow too quickly
(e.g., if it grows most polynomially with n), the overall probability that the
supremum deviation exceeds any fixed ǫ will decay exponentially with the
sample size. This exponential decay is crucial for ensuring that the empirical
risk minimizer fn converges to the true risk minimizer fF within the function
class, thereby establishing the consistency of ERM in a rigorous, quantitative
manner.

Advanced models, such as neural networks with bounded architectures
or ensemble methods like random forests with a fixed number of trees,
may exhibit shattering coefficients that grow super-polynomially but sub-
exponentially with the sample size. For instance, for such function classes
we might have

N (F , n) ≤ exp(nα) for some 0 < α < 1.

Substituting this bound into our uniform convergence inequality yields

4N (F , 2n) exp

(

−
nǫ2

8

)

≤ 4 exp ((2n)α) exp

(

−
nǫ2

8

)

= 4 exp

(

(2n)α −
nǫ2

8

)

.

Here, the term exp ((2n)α) grows faster than any polynomial in n but
slower than a full exponential, since α < 1. As n increases, the linear term

−nǫ2

8 in the exponent eventually dominates (2n)α. This means that despite
the relatively rapid growth of exp ((2n)α), the overall expression is ultimately

controlled by the stronger exponential decay of exp
(

−nǫ2

8

)

. Consequently, for

function classes with super-polynomial but sub-exponential shattering coeffi-
cients, the probability bound still tends to zero as n→∞, albeit at a slower
convergence rate than for classes with polynomial or logarithmic shattering
coefficients. This result implies that the ERM remains consistent in these
cases: the empirical risk minimizer fn will converge to the best classifier in F
as more data are collected.

In contrast, consider the function class Fall, which encompasses all possible
classifiers. For this class, the shattering coefficient is maximal:

N (Fall, n) = 2n.

60 Deep Learning Generalization

Substituting this into the uniform convergence bound gives

4N (Fall, 2n) exp

(

−nǫ2

8

)

= 4 22n exp

(

−nǫ2

8

)

= 4 exp

(

2n ln 2− nǫ2

8

)

.

The term 4 22n grows exponentially with n, and when we simplify the
exponent, we obtain

2n ln 2− nǫ2

8
= n

(

2 ln 2− ǫ2

8

)

.

For the entire bound to tend to zero, we require the coefficient 2 ln 2− ǫ2

8
to be negative; that is,

2 ln 2− ǫ2

8
< 0 ⇒ ǫ2 > 16 ln 2 ≈ 11.09.

However, in typical learning scenarios, ǫ is chosen to be much smaller than√
16 ln 2 ≈ 3.33. As a result, the exponent 2n ln 2 − nǫ2

8 remains positive,
leading the probability bound to increase exponentially with n. This indicates
that for function classes with exponential shattering coefficients, ERM is not
consistent; the empirical risk minimizer may not generalize effectively, as the
probability that the uniform deviation between the true and empirical risks
exceeds ǫ fails to vanish.

In summary, the growth rate of the shattering coefficient N (F , n) is an
important component in determining the consistency of ERM. For function
classes with sub-exponential (or polynomial) growth, the exponential decay in
the probability bound guarantees that the uniform deviation shrinks to zero
with increasing sample size, ensuring that ERM generalizes well. Conversely,
for function classes with exponential growth in their shattering coefficient,
the bound does not decay, and may even grow, indicating a failure of consis-
tency. This analysis underscores the importance of controlling the capacity of
the function class (measured using shattering coefficient N (F , n)) to achieve
reliable generalization in machine learning.

Beyond the categories discussed earlier, many practical function classes ex-
hibit intermediate growth rates in their shattering coefficients, often shaped
by additional constraints or regularization strategies. For example, regular-
ized models—which incorporate L1 or L2 penalties—can effectively reduce
the shattering coefficient by limiting the capacity of the hypothesis space.
Such regularization essentially enforces simpler models that are less prone to
overfitting, ensuring that N (F , n) grows at most polynomially or even sub-
polynomially with n.

Similarly, sparse models, such as sparse linear models or those employ-
ing feature selection methods, tend to have reduced shattering coefficients.
By constraining the number of active parameters or selected features, these
models effectively control their complexity, leading to more favorable gener-
alization properties. In this way, sparsity serves as a natural mechanism to

Introduction to Statistical Learning Theory 61

restrict the effective size of the function class, thereby promoting consistent
performance as more data becomes available.

Hierarchical models, such as deep neural networks, present another inter-
esting case. Their shattering coefficients can vary significantly depending on
architectural choices such as depth, width, and the implementation of reg-
ularization techniques. By carefully designing these networks, for example,
by bounding the depth or limiting connectivity, one can achieve manageable
growth rates of the shattering coefficient. This controlled complexity is es-
sential to ensure that ERM remains consistent, even for complex, multilayer
architectures.

In general, in real-world applications, the balance between expressiveness
and complexity is delicate. By selecting or designing models whose shattering
coefficients grow at most polynomially with the sample size, we can harness the
power of ERM (in-sample) while ensuring robust generalization performance
(out-of-sample). Techniques such as regularization, sparsity enforcement, and
careful architectural design are useful strategies for maintaining this balance,
ultimately leading to more reliable and consistent learning outcomes.

2.3.5 Generalization bounds

In the analysis of ERM, it is often useful to reinterpret the existing probability
bounds to better understand the relationship between empirical risk Remp(f)
and true risk R(f). That is, rather than fixing a deviation threshold ǫ and
computing the probability that the difference |R(f) − Remp(f)| exceeds ǫ,
we can invert the perspective by fixing a confidence level δ > 0 and then
determining how small ǫ must be to ensure that the true risk is close to the
empirical risk with high probability.

Specifically, starting with the probability bound

P

(

sup
f∈F
|R(f)−Remp(f)| > ǫ

)

≤ 2N (F , 2n) exp
(

−nǫ2

4

)

,

our goal is to express this bound in terms of ǫ given a fixed probability level
δ. To achieve this, we set the right-hand side equal to δ:

2N (F , 2n) exp
(

−nǫ2

4

)

= δ.

Solving for ǫ involves taking logarithms on both sides. Specifically, we have:

exp

(

−nǫ2

4

)

=
δ

2N (F , 2n) ,

which, upon taking the natural logarithm, gives

−nǫ2

4
= ln

(
δ

2N (F , 2n)

)

.

62 Deep Learning Generalization

Rearranging and solving for ǫ yields

ǫ =

√

4

n
ln

(
2N (F , 2n)

δ

)

.

Substituting this expression for ǫ back into the probability statement, we
obtain the generalization bound:

P

(

sup
f∈F
|R(f)−Remp(f)| > ǫ

)

≤ δ, where ǫ =

√

4

n
(ln(2N (F , 2n))− ln(δ)).

This bound says that, with probability at least 1−δ, every function f ∈ F
satisfies

R(f) ≤ Remp(f) +

√

4

n
(ln(2N (F , 2n))− ln(δ)).

This generalization bound is instrumental in establishing the consistency
of ERM. In particular, ERM is consistent for the function class F if the term

√

ln(2N (F , 2n))
n

converges to zero as the sample size n tends to infinity. This condition is
typically satisfied when the shattering coefficient N (F , 2n) grows at most
polynomially with n. In such cases, the logarithmic growth in the numerator is
eventually outweighed by the linear growth in the denominator, which ensures
that ǫ decreases as n increases.

Moreover, the bound holds uniformly for all functions f ∈ F , ensuring
that the empirical risk minimizer fn (which minimizes Remp(f)) also satisfies
this inequality. Notably, the bound is robust in the sense that it applies to any
function in the hypothesis class F , regardless of how it is selected. However,
since the bound must hold uniformly over F , it is a conservative statement,
especially for large or complex function classes. In such cases, the bound on
ǫ may not be tight (meaning there is still room for improvement), and the
effectiveness of the bound heavily depends on the growth rate of N (F , 2n).
For function classes with rapidly increasing shattering coefficients, the bound
may become vacuous, which means consistency cannot be achieved even if n
goes to infinity.

In summary, by reinterpreting the probability bound in terms of a fixed
confidence level δ and solving for the deviation ǫ, we obtain a concrete gener-
alization bound that quantifies how close the true risk is to the empirical risk
with high probability. This bound is central to understanding the conditions
under which the ERM is consistent and emphasizes the importance of con-
trolling the complexity of the function class to ensure robust generalization
as the sample size grows.

Introduction to Statistical Learning Theory 63

2.3.6 VC dimension

In the preceding sections, we formulated generalization bounds in terms of the
shattering coefficient N (F , n). Although these bounds are powerful, directly
evaluating the shattering coefficient can be challenging because of its combina-
torial nature. To overcome this difficulty, researchers have developed various
alternative capacity measures, each with its own set of advantages and limita-
tions. Among these measures, the VC dimension stands out as one of the most
prominent and widely used. The VC dimension provides a succinct numerical
summary that characterizes the growth behavior of the shattering coefficient,
thereby facilitating the analysis of learning algorithms in the context of ERM.

The VC dimension of a function class F , denoted by VC(F), is a fun-
damental concept in SLT. It quantifies the capacity of F by capturing the
largest number of points that the function class can shatter. Recall that a
sample Zn = {z1, z2, . . . , zn} is said to be shattered by F if, for every possi-
ble binary labeling of the sample, there exists a function in F that correctly
classifies the sample according to that labeling. Formally, Zn is shattered by
F if

|FZn
| = 2n,

where FZn
denotes the set of all distinct binary pointwise labelings induced

by functions in F on the sample Zn. The VC dimension is then defined as the
largest integer d for which there exists at least one sample of size d that is
shattered by F . If no finite d exists, the VC dimension is defined to be infinite:

VC(F) = max

{

n ∈ N

∣
∣
∣
∣
|FZn

| = 2n for some Zn ⊂ X
}

.

For example, in the case of linear classifiers in R
d, the VC dimension is

d+1. This implies that there exists a set of d+1 points that can be shattered by
linear classifiers, but no set of d+2 points can be shattered. Similarly, decision
trees with a bounded depth k have a finite VC dimension that depends on
both k and the number of features available.

A cornerstone result connecting the VC dimension to the shattering coef-
ficient is provided by the Sauer-Shelah Lemma. Independently discovered by
Sauer (1972), Shelah (1972), and Vapnik and Chervonenkis (1971), this lemma
offers a tight combinatorial bound on N (F , n) based on the VC dimension d.7

Specifically, it states that if F has a finite VC dimension d, then for all n ∈ N:

N (F , n) ≤
d∑

i=0

(
n

i

)

.

Moreover, for n ≥ d, this bound can be further simplified to

N (F , n) ≤
(en

d

)d

,

7We also used this result in the proof in the previous section.

64 Deep Learning Generalization

where e is the base of the natural logarithm. This result is important because
it shows that if the VC dimension is finite, the shattering coefficient grows at
most polynomially with n. As a consequence, by substituting this bound into
our earlier generalization bounds, we deduce that the term

√

ln(2N (F , 2n))
n

tends to zero as n increases, thereby ensuring that the ERM is consistent for
function classes with finite VC dimension.

On the other hand, if F has an infinite VC dimension, then it can shatter
arbitrarily large samples, and the shattering coefficient grows exponentially
with n (i.e., N (F , n) = 2n). In such cases, the generalization bounds derived
from the shattering coefficient do not guarantee convergence, implying that
ERM may not generalize well.

Thus the VC dimension serves as a crucial tool for translating the combi-
natorial complexity captured by the shattering coefficient into a more man-
ageable numerical form. This, in turn, provides a pathway to establish gener-
alization bounds and guarantees the consistency of ERM for function classes
whose capacity is appropriately controlled. Understanding these relationships
is fundamental for designing and selecting models that balance expressiveness
and complexity, thereby ensuring robust learning outcomes in practice.

Combining the insights from the Sauer-Shelah Lemma and the derived
generalization bounds, we arrive at a fundamental theorem that links the VC
dimension of a function class F to the consistency of ERM. Specifically, the
theorem states that ERM is consistent with respect to a function class F if and
only if the VC dimension VC(F) is finite. In other words, if the function class
has a finite VC dimension, then the empirical risk minimizer converges to the
true risk minimizer as the sample size grows, ensuring reliable generalization.

The proof of this theorem can be divided into two cases. First, when VC(F)
is finite, the Sauer-Shelah Lemma guarantees that the shattering coefficient
N (F , n) grows at most polynomially with n. Substituting this polynomial
growth into our generalization bounds shows that the deviation ǫ between
the true risk R(f) and the empirical risk Remp(f) decreases as n increases.
Consequently, the uniform convergence of the empirical risk to the true risk
is ensured, and ERM converges to the optimal risk minimizer within F . In
the second case, when VC(F) is infinite, the shattering coefficient N (F , n)
grows exponentially with n. This exponential growth renders the generaliza-
tion bound ineffective because the deviation ǫ does not tend to zero, implying
that the empirical risk minimizer may not converge to the true risk minimizer,
and ERM fails to generalize consistently.

An important aspect of both the VC dimension and the shattering co-
efficient is their distribution independence, in that they depend solely on
the structure of the function class F and are agnostic to the underlying
data distribution P . This universality is advantageous because it ensures that
the theoretical generalization bounds hold uniformly across all possible data

Introduction to Statistical Learning Theory 65

distributions, making the results robust and widely applicable. However, this
same distribution independence can be a double-edged sword. By not taking
into account the specific properties of the data distribution, the VC dimen-
sion can sometimes yield overly conservative bounds. In practice, this can lead
to loose generalization bounds, especially in scenarios where the data distri-
bution is particularly benign or structured in a way that allows for tighter
bounds. Moreover, for certain function classes, the VC dimension might over-
estimate the true complexity needed to effectively model the data, resulting
in conservative estimates that do not accurately reflect the model’s practical
generalization performance.

In summary, the theorem connecting the VC dimension to the consistency
of ERM provides a clear criterion: ERM is consistent if and only if the function
class has finite capacity as measured by the VC dimension. This result not
only underpins much of the theoretical framework of statistical learning but
also guides practical model selection and regularization strategies aimed at
balancing expressiveness and complexity to achieve reliable generalization in
real-world applications.

2.3.7 Rademacher complexity

Although the shattering coefficient N (F , n) and the VC dimension VC(F) are
foundational measures for quantifying the capacity of a function class, they
sometimes fall short in generating tight generalization bounds. To address
these challenges, researchers have introduced another useful capacity measure
known as the Rademacher complexity, which is briefly mentioned in the pre-
vious section. Unlike the shattering coefficient and VC dimension, which are
purely combinatorial and distribution-independent, the Rademacher complex-
ity now takes into account the underlying probability distribution of the data,
thereby allowing it to yield sharper and more refined generalization bounds
that better reflect the actual behavior of learning algorithms in practice.

The Rademacher complexity quantifies the ability of a function class F
to fit random noise. It is defined using Rademacher variables, σ1, σ2, . . . , σn,
which are independent random variables that take the values +1 and −1
with equal probability 0.5. These variables can be thought of as the unique
outcomes of fair coin tosses and provide a mechanism to introduce randomness
into the analysis. Formally, given a sample set Zn = {X1, X2, . . . , Xn}, the
Rademacher complexity of F is defined as

R(F) = Eσ

[

sup
f∈F

1

n

n∑

i=1

σif(Xi)

]

,

where Eσ denotes the expectation over the Rademacher variables. Intuitively,
this definition measures, on average, how well the functions in F fit random
labeling in the data. In other words, if there exists a function in F that can
strongly correlate with random signs σi, then the Rademacher complexity will

66 Deep Learning Generalization

be high, signaling that the function class has a high capacity to fit noise, which
is a potential red flag for overfitting.

To gain further intuition, consider fixing a particular realization of the
Rademacher variables. Each σi can be interpreted as a randomly assigned
label to the corresponding data point Xi. The product σif(Xi) is positive
if f aligns with the random label at Xi and negative otherwise. The sum
∑n

i=1 σif(Xi) aggregates the classification accuracy over the entire sample.
Taking the supremum over all functions in F identifies the function that best
fits these random labels, and the expectation over σ averages this maximal
alignment over all possible random labelings. In this way, a high value of
R(F) indicates that the function class can easily fit random noise, which in
turn reflects a high capacity and a potential risk of overfitting. Conversely,
a lower Rademacher complexity implies that the class is more constrained,
which can potentially lead to better generalization performance.

The generalization bound that utilizes Rademacher complexity is typically
expressed as

P

(

R(f) ≤ Remp(f) + 2R(F) +
√

log(1/δ)

2n

)

≥ 1− δ.

This inequality asserts that, with probability at least 1 − δ, the true risk
R(f) of any function f ∈ F is bounded above by its empirical risk Remp(f)
plus an additional term that scales with twice the Rademacher complexity and

a confidence term
√

log(1/δ)
2n . The term 2R(F) captures the complexity of the

function class in a data-dependent manner, thereby offering a more customized
measure and often a tighter bound than the VC dimension. Moreover, this
bound holds uniformly over all functions in F , making it a strong guarantee
for the performance of the empirical risk minimizer.

Rademacher complexity offers several distinct advantages. First, because
it is distribution-dependent, it can adapt to the specific characteristics of the
data, often yielding tighter bounds than those based solely on the VC dimen-
sion or shattering coefficient. Second, its formulation is flexible enough to be
applied across a wide variety of function classes, ranging from linear models to
deep neural networks, where traditional measures such as the VC dimension
may be difficult to compute or interpret. Finally, by being amenable to empir-
ical estimation, the Rademacher complexity provides practical insights into
the capacity of a model, guiding model selection and regularization design.
Techniques such as L1 (Lasso) and L2 (ridge) regularization, for example, in-
herently aim to reduce the Rademacher complexity by constraining the size
or sparsity of the model parameters, thereby reducing the risk of overfitting
and promoting better generalization. In neural network architectures, choices
regarding depth, width, and connectivity all influence the Rademacher com-
plexity, and careful design can help maintain a manageable capacity even in
complex models.

Introduction to Statistical Learning Theory 67

In summary, Rademacher complexity is a powerful, distribution-sensitive
capacity measure that enhances our ability to derive sharp generalization
bounds. It is distribution dependent since we need to draw samples Zn =
{X1, X2, . . . , Xn} from the underlying distribution P . Thus the resulting
Rademacher complexity depends on the specific characteristics of the data
distribution. This means that if the distribution P is such that the data
are concentrated in regions where the functions in F do not vary much, the
Rademacher complexity may be lower than if the data were more spread out
across the input space. Thus, by quantifying the capacity of a function class to
fit random noise, it provides a direct link between model complexity and gen-
eralization performance, making it an invaluable tool in both the theoretical
analysis and practical application of machine-learning algorithms.

2.3.8 Other generalization bounds and capacity concepts

While we have already explored foundational capacity measures, including the
shattering coefficientN (F , n), the VC dimension VC(F), and the Rademacher
complexity R(F), the literature encompasses a wide array of other capacity
concepts that provide additional measures of function class complexity. Al-
though detailing each of these additional measures is beyond the scope of this
chapter, it is instructive to note that most generalization bounds in SLT share
a common structural form. This unified form can be expressed as:

P
(

R(f) ≤ Remp(f) + capacity(F) + confidence(δ)
)

≥ 1− δ.

In this formulation, the probability statement asserts that with confidence
at least 1−δ, the true risk R(f) of any function f ∈ F is bounded above by its
empirical risk Remp(f) plus two additional terms: a capacity term and a confi-
dence term. The empirical risk term Remp(f) quantifies how well the function
f fits the observed training data, serving as a direct measure of performance
on the given sample. The capacity term capacity(F) indicates the complexity
or richness of the function class F . It can be expressed using different capacity
measures such as the VC dimension, Rademacher complexity, or others, each
of which captures distinct aspects of the function class’s potential to fit data.
A higher capacity indicates a more expressive (or complex) function class,
which might lead to better training performance but also increases the risk of
overfitting. Finally, the confidence term confidence(δ) incorporates the chosen
probability level δ and typically depends on both δ and the sample size n.
This term ensures that the bound holds with high probability over different
samples drawn from the underlying data distribution.

A critical aspect of these generalization bounds is their worst-case nature.
Because they are designed to hold uniformly for all functions in F , they nec-
essarily account for the “most badly behaved” function within the class. This
worst-case analysis corresponds to a robust optimization objective, although
it also tends to yield conservative (and sometimes loose) bounds that may not

68 Deep Learning Generalization

tightly reflect the performance of the functions typically selected by learning
algorithms like ERM.

To illustrate the interplay of these components, consider how different
capacity measures influence the bounds. When using the VC dimension VC(F)
as the capacity measure, the generalization bound may take the form (with
probability ≥ 1− δ):

R(f) ≤ Remp(f) +

√
√
√
√VC(F) · log

(
n

VC(F)

)

n
+

√

log(1/δ)

2n
.

In this bound, the capacity term

√
VC(F)·log(n

VC(F))
n reflects the complex-

ity of the function class in relation to the sample size. Alternatively, when
employing the Rademacher complexity R(F), which is sensitive to the data
distribution and often yields sharper bounds, the generalization bound be-
comes:

R(f) ≤ Remp(f) + 2R(F) +
√

log(1/δ)

2n
.

This formulation benefits from the distribution-dependent nature of the
Rademacher complexity, frequently resulting in tighter, less conservative
bounds compared to those derived solely from the VC dimension. In general,
the general form of these bounds accommodates various capacity measures,
allowing us to tailor the analysis to the specific properties of the function class
and the data distribution at hand.

Also, note that these uniform guarantees apply across the entire function
class and thus present strong theoretical foundations. However, it is important
to recognize that, in practice, the classifiers selected by methods like ERM are
rarely the worst-case functions considered in these bounds. As a result, while
these theoretical guarantees are robust and broadly applicable, they may be
conservative relative to the actual performance observed in real-world applica-
tions. Nonetheless, understanding these generalization bounds is fundamental,
as they offer deep insights into the trade-offs between model capacity, sam-
ple size, and confidence, and they underpin the rigorous analysis of learning
algorithms in SLT.

2.4 Summary

In this chapter, we introduced the foundational concepts of SLT, providing
the basic mathematical framework for understanding the finite-sample per-
formance of learning algorithms under the ERM framework. We began by
introducing key concepts such as the true risk, defined as the expected loss

Introduction to Statistical Learning Theory 69

over the unknown data-generating distribution, and the empirical risk, which
serves as a proxy computed over a finite training dataset.

A central theme of this chapter is the formulation and analysis of gener-
alization bounds, which quantify the gap between the empirical risk and the
true risk. We introduced several capacity measures, including the shattering
coefficient, VC dimension, and Rademacher complexity, all of which are de-
signed to capture the expressive power (or capacity) of a function class (or
hypothesis class). These measures play a crucial role in determining whether
the ERM principle can guarantee consistency; that is, whether the model
selected by minimizing the empirical risk converges to the optimal (Bayes)
classifier as the sample size increases. In particular, the Sauer-Shelah Lemma
provided a combinatorial bridge between the VC dimension and the growth
rate of the shattering coefficient, revealing that if the VC dimension is finite,
the shattering coefficient grows at most polynomially with the sample size,
which in turn ensures that the generalization error diminishes as more data
become available.

We also explored the estimation–approximation trade-off, which highlights
the delicate balance between the complexity of the hypothesis space and the
ability to generalize from finite samples. A function class that is too simple
incurs high approximation error (or bias), while an overly complex class is
prone to high estimation error (or variance) due to overfitting. This trade-off
is analogous to the classical bias-variance trade-off and is central to designing
learning algorithms that strike an effective balance between fitting the training
data and maintaining robust predictive performance on unseen data. Regu-
larization techniques, such as L1 and L2 penalties, were discussed as practical
strategies for controlling this balance by reducing the effective capacity of the
model.

Furthermore, the chapter highlighted the role of uniform convergence and
the ULLN in establishing the consistency of ERM. By ensuring that the em-
pirical risk converges uniformly to the true risk over the entire hypothesis
space, uniform convergence guarantees that the empirical risk minimizer not
only performs well on the training data but also generalizes reliably to the
true data distribution. This convergence was analyzed using various proba-
bilistic tools, including concentration inequalities like Hoeffding’s inequality,
and further refined by methods such as symmetrization, which facilitate the
extension of these results to infinite function classes.

Overall, the insights presented in this chapter lay the theoretical ground-
work for understanding the interplay between model complexity, sample size,
and generalization performance. By linking capacity measures to generaliza-
tion bounds, SLT provides robust theoretical guarantees that guide the design
and evaluation of learning algorithms. This foundation is essential for advanc-
ing both the theory and practice of machine learning, ensuring that mod-
els developed in finite-sample settings can perform effectively in real-world
applications.

3

Classical Perspectives on Generalization

In this chapter, we will examine the comprehensive training process of one of
the most fundamental models in supervised learning: linear regression. In this
framework, linear regression constructs a linear mapping from input features
to an output target, thereby serving as a critical foundation for more complex
modeling endeavors in our exploration toward model generalization. Through
an in-depth analysis of a simple linear regression model’s training process, we
aim to obtain a better understanding of the essential components of training,
including the data, model architecture, objective (or cost) function, and the
optimization process.

Our discussion will delve into the underlying mathematical intuition asso-
ciated with each component, which is indispensable for a nuanced understand-
ing of various modeling operations. Moreover, we will contextualize these the-
oretical concepts by underscoring their practical relevance, emphasizing that
effective learning is closely tied to a clear comprehension of the context in
which these models operate. To bridge the gap between theory and practice,
we will also incorporate implementation details to allow for better apprecia-
tion of both conceptual and practical dimensions.

After establishing these foundational building blocks, we will proceed to
discuss the classical perspective on generalization. This section covers key
ideas such as empirical risk minimization (discussed in further detail in
Chapter 2) and bias-variance decomposition. The fundamental insights pre-
sented in this chapter are intended to provide a good understanding that will
facilitate a smooth transition to the modern perspectives on generalization
discussed in the subsequent chapter.

3.1 The Goal of Machine-Learning Models

The primary objective of constructing machine-learning models is to emulate
and automate manual processes, thus reducing human intervention and in-
creasing efficiency. For example, tasks such as predicting housing prices or
forecasting future temperatures exemplify applications where these models
provide significant value. Supervised learning, a major branch of machine

DOI: 10.1201/9781003511601-3 70

https://doi.org/10.1201/9781003511601-3

Classical Perspectives on Generalization 71

learning, focuses on learning a mapping relationship between input data and
target output that has been predetermined through manual annotation.

Mathematically, this mapping is formalized by learning a function

f : Rd → R,

which transforms an input vector x ∈ R
d into a real-valued scalar output

y ∈ R. This function is parameterized by a set of parameters θ that govern
the nature of the mapping. For example, in the case of linear regression, the
function is typically expressed as

f(x; θ) = θ0 + θ1x1 + θ2x2 + · · ·+ θdxd,

where θ0 is the intercept term and θ1, θ2, . . . , θd are the coefficients associated
with each input feature.

The structure of this mathematical formulation embodies our inductive
bias, which encapsulates prior beliefs about the underlying data-generating
process. In linear regression, inductive bias assumes that the relationship be-
tween the input features and the output is linear. This simplifying assumption
not only makes the model tractable but also reflects a hypothesis that often
aligns well with various real-world phenomena.

During the learning process, the model parameters θ are optimized to
minimize the discrepancy between the predicted output and the actual target
values. Once the optimization converges, the trained model can be used to
predict outputs for new input data xnew according to the relation

ŷnew = f(xnew; θ).

This automatic derivation and data-driven learning of the mapping from
data starkly contrasts with traditional rule-based software engineering, where
explicit mapping rules must be manually coded. In fact, this is indeed the case
when these model weights are learned and used in production. The ability of
supervised learning algorithms to learn this mapping logic directly from data
is particularly advantageous in scenarios where the underlying processes are
too complex for manual rule identification.

It is essential to recognize that any model represents a simplifying assump-
tion about the underlying data-generating process, with these assumptions of-
ten being accompanied by an inherent inductive bias. In the context of linear
regression, the assumption of linearity implies that the relationship between
inputs and outputs is smooth and continuous, meaning that small changes
in input features should result in proportionally small changes in the output.
Formally, this concept of smoothness can be mathematically articulated as

lim
‖∆x‖→0

∆y = lim
‖∆x‖→0

[f(x+∆x; θ)− f(x; θ)] = 0.

When an inductive bias is appropriately aligned with the true underlying
process, it can facilitate a generalization effect, enabling the model to perform

72 Deep Learning Generalization

well on unseen data. Furthermore, our hypothesis regarding the true function
may be enriched by prior knowledge of expected regularities or properties in
the data, which can be further leveraged through advanced frameworks such
as transfer learning.

3.1.1 Revisiting the model training workflow

To thoroughly examine the intricacies of model development through super-
vised learning, we now revisit the four key components of the model training
workflow introduced in Chapter 1: data, model, cost function, and optimiza-
tion.

3.1.1.1 Data

In supervised learning, the dataset is comprised of pairs

{(x(i), y(i))}ni=1,

where each x(i) ∈ R
d represents an input feature vector, and y(i) ∈ R denotes

the corresponding target value. For notational convenience, the entire dataset
is often represented as

D = {(X,y)} = {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))},

where X is the matrix collecting all input vectors and y is the vector of
target values. This structured representation facilitates efficient processing
and analysis during model training.

Note thatX can also represent unstructured data such as images and texts.
In this case, the unstructured data would be preprocessed into a structured
format to facilitate the downstream processing and learning.

3.1.1.2 Model

The model class defines the hypothesis space from which we aim to select the
best function f that approximates the underlying relationship between inputs
and outputs. In linear regression, the hypothesis space consists of all linear
functions parameterized by θ. Specifically, the function is expressed as

f(x; θ) = θ0 + θ1x1 + θ2x2 + · · ·+ θdxd,

which can be more succinctly rewritten in vectorized form as

f(x; θ) = θ
⊤x,

where the augmented input vector is defined as

x = [1, x1, x2, . . . , xd]
⊤,

thereby incorporating the intercept term θ0. This formulation represents our
inductive bias toward linearity.

Classical Perspectives on Generalization 73

3.1.1.3 Cost function

The cost function quantitatively measures the discrepancy between the
model’s predictions and the actual target values. In the context of linear re-
gression, the mean squared error (MSE) is commonly adopted and is defined as

J(θ) =
1

n

n∑

i=1

(

f(x(i); θ)− y(i)
)2

.

which represents the empirical risk using the training set. Minimizing J(θ)
during the training process ensures that the model’s predictions are as close
as possible to the observed data, which produces a good approximation of the
underlying data-generating process.

3.1.1.4 Optimization

Optimization involves determining the parameter vector θ that minimizes the
cost function J(θ). For linear regression, one common approach is to use the
Normal Equation, which provides an analytical solution:

θ = (X⊤X)−1X⊤y,

where X is the design matrix containing all input feature vectors, and y is the
vector of corresponding target values. Alternatively, iterative methods such as
gradient descent can be employed to approximate the optimal parameters. In
gradient descent, the parameter update is given by

θ := θ − α∇J(θ),

where α represents the user-defined learning rate, and ∇J(θ) is the gradient of
the cost function with respect to θ. This iterative approach is particularly use-
ful when the analytical solution is computationally infeasible or when dealing
with very large datasets.

In the next section, we will dive deeper into the data component, exploring
its role and significance in the overall supervised learning process.

3.2 The Data

A substantial amount of high-quality training data is the cornerstone of to-
day’s effective machine-learning systems. One can think of these data as the
knowledge of a teacher who provides the correct answers to a student. For
instance, when a model is shown a picture of a cat along with the label “This
is a cat,” it is tasked to learn to recognize and classify similar images in the
future. This data-driven teaching process underlies many of the sophisticated
applications we use on a daily basis, such as facial recognition features that
unlock smartphones.

74 Deep Learning Generalization

As introduced earlier, all machine-learning models begin with a given set
of training data. In the context of supervised learning, this training data
comprises input-output pairs. Suppose there are n such pairs, and consider
the i-th pair denoted by

(

x(i), y(i)
)

.

Each entry in the training set must include both the input x(i) and the output
y(i) to facilitate the learning process. The input vector x(i) is typically bolded
to emphasize that it consists of one or more features. These features serve as
the predictors that the model uses to generate a scalar prediction ŷ(i) for the
i-th observation, according to the model function

ŷ(i) = f
(

x(i); θ
)

,

where f is the model function parameterized by the vector θ.
It is worth noting that the input vector x(i) can be referred to by various

names. In machine learning, it is often called a feature or predictor, while in
statistics it might be referred to as a covariate or independent variable. Simi-
larly, the output y(i) is interchangeably known as the target, label, outcome, or
dependent variable. We will use these terms interchangeably throughout this
chapter.

Furthermore, all the features in x(i) of a single data entry are collectively
referred to as an observation. When combined, all observations form the design
matrix X. By convention, vectors are represented as column vectors. Thus,
given the i-th input-output pair

(
x(i), y(i)

)
, where x(i) is a vector of features

and y(i) is a scalar outcome, the entire dataset can be denoted as

D = (X,y) .

Here, X is the design matrix, a two-dimensional array with n rows and p
columns (with p representing the number of features), and y is a column
vector with n elements:

X =








x(1)⊤

x(2)⊤

...

x(n)⊤







∈ R

n×p, y =








y(1)

y(2)

...

y(n)







∈ R

n.

This structured format is essential for both theoretical analysis and practical
implementation of machine-learning algorithms.

As a concrete example, consider the following Python code, which demon-
strates how to create a one-dimensional array (vector) and a two-dimensional
array (matrix) using randomly generated numbers from the NumPy library,
a widely used package for scientific computing in Python.

Classical Perspectives on Generalization 75

1 # Widely used package for scientific computing

2 import numpy as np

3

4 # Fix random seed for reproducibility

5 np.random .seed (1)

6

7 # Generate a one -dimensional array of random numbers

8 x = np.random .rand (5)

9 print (x)

10 # Expected Output :

11 # array ([0.417022 , 0.720324 , 0.000114 , 0.302333 , 0.146756])

12

13 # Generate a two -dimensional array (matrix) of random numbers

14 X = np.random .rand(2, 3)

15 print (X)

16 # Expected Output :

17 # array ([[0.092339 , 0.186260 , 0.345561] ,

18 # [0.396767 , 0.538817 , 0.419195]])

Listing 3.1
Creating Arrays with NumPy.

This example illustrates how data can be generated and structured into
vectors and matrices, which are amenable to further analysis and use in train-
ing machine-learning models.

3.2.1 Sampling from the underlying data distribution

In supervised learning, the training dataset

D = (X,y)

is commonly assumed to be drawn from an unknown underlying data-
generating distribution

P(x, y).
This relationship is denoted as

(X,y) ∼ P(x, y).

In practice, the distribution P(x, y) is not directly accessible. If it were known,
many learning problems would be considerably simplified. Instead, the dataset
D represents a single realization of observations, which are often assumed to be
independently and identically distributed (i.i.d.) samples drawn from P(x, y).

When we repeatedly draw samples from the true distribution P(x, y) to
generate additional datasets, each new training set will likely differ from D.
In fact, a commonly used technique called bootstrap is based on randomly
sampling from D to generate additional artificial datasets. This variability is
the motivation behind data augmentation techniques, which create additional
artificial (or bootstrapped) samples for training purposes. By exposing the

76 Deep Learning Generalization

FIGURE 3.1
A simplified process of generating three different training sets based on the
same data distribution.

model to a broader range of data variations, these techniques enhance the
model’s robustness and its ability to generalize to unseen data.

It is important to note, however, that not every additional sample will con-
tribute positively to model learning; some may introduce noise or irrelevant
information. Nonetheless, in general, providing the model with diverse train-
ing data tend to improve both its training performance and generalization
capabilities.

Figure 3.1 illustrates a simplified process of generating three different train-
ing sets from the same data distribution. In this example, each training set
comprises five different input-output pairs randomly sampled from P(x, y).
Due to the randomness inherent in the sampling process, and potential noise
perturbations, these training sets will most likely differ from one another.

It is evident from this process that the available training set is merely
one snapshot among many possible realizations. Sampling another training
set from P(x, y) would likely result in a different collection of observations.
Moreover, both the input matrix X and the output vector y can contain
either continuous or discrete variables. In our discussion, we focus on linear
regression, which typically assumes a continuous target variable y.

To illustrate the concept of sampling variability, consider the following
Python code. Previously, we used the function np.random.rand() to generate
random numbers uniformly distributed between 0 and 1. This function ensures
that every number within the interval [0, 1] is equally likely to be sampled.
However, it is possible to modify the range or employ different probability
distributions, such as the normal distribution, which is characterized by its
mean and variance. The code listing below demonstrates these differences.

Classical Perspectives on Generalization 77

1 # Draw random samples from a uniform distribution ranging from -1

to 0

2 x = np.random .uniform (-1, 0, 5)

3 print (x)

4 # Expected Output :

5 # array ([-0.3147805 , -0.79554775 , -0.12188256 , -0.97261241 ,

-0.32953249])

6

7 # Drawing again will most likely result in a different set of

numbers

8 x = np.random .uniform (-1, 0, 5)

9 print (x)

10 # Expected Output :

11 # array ([-0.5826952 , -0.44131017 , -0.85961306 , -0.80189851 ,

-0.19925543])

12

13 # Change to a normal distribution with mean 1 and standard

deviation 2

14 x = np.random .normal (1, 2, 5)

15 print (x)

16 # Expected Output :

17 # array ([2.45995119 , 1.74598758 , 2.06762182 , 0.8160534 ,

4.82764078])

Listing 3.2
Demonstrating Sampling Variability with Different Distributions.

As observed from the above examples, each execution generates a different
set of numbers. Drawing a list of five numbers offers infinitely many possibil-
ities. On one hand, we lack direct access to the true underlying distribution,
which might be uniform over a specific range, normal with a particular mean
and variance, or even a more complex distribution defined by other param-
eters. On the other hand, even if the true data-generating distribution were
known, each sampling process would still yield different results due to the
inherent randomness of the sampling mechanism.

Formally, if an individual input x(i) is drawn from the marginal distribu-
tion P(x), then each x(i) is often assumed to be an i.i.d. sample:

x(i) ∼ P(x), for i = 1, 2, . . . , n.

This i.i.d. assumption is fundamental, as it underpins many theoretical guar-
antees in machine learning and is crucial for ensuring that the model general-
izes well to new, unseen data.

Understanding and managing the variability in sampling is vital for model
training. Even with a simple model like linear regression, the capacity to
generate diverse training datasets—through techniques such as data augmen-
tation—can significantly enhance the model’s resilience to fluctuations and
noise encountered in real-world scenarios.

In summary, the quality, structure, and inherent variability of the training
data play a critical role in determining the performance and generalization
capabilities of machine-learning models. A thorough understanding of the data

78 Deep Learning Generalization

sampling process, along with the careful use of techniques to increase data
diversity, is a good step toward building robust and effective models.

3.2.2 The train-test split

As discussed in the previous chapters, the primary objective of any machine-
learning model is to achieve strong predictive performance on future, unseen
datasets. In practice, these unseen datasets are commonly referred to as the
test set. However, during the model development phase, the true test set is
not available, and we must rely solely on the available dataset

D = (X,y)

to evaluate and refine our model. To rigorously assess the model’s predictive
capabilities and to mitigate potential issues such as overfitting and selection
bias, it is standard practice to partition D into distinct, non-overlapping sub-
sets: a training set, a validation set, and a test set.

The test set, denoted by

Dtest = (Xtest,ytest),

serves as a proxy for evaluating the model’s generalization performance on
future data. Two key principles govern the use of the test set:

1. Exclusion from Training: The test set must remain entirely separate
from the model training process. This means that none of the data
in Dtest should be used for training or hyperparameter tuning. This
strict separation prevents data leakage, ensuring that the model
does not inadvertently learn from the test set and thereby maintains
unbiased performance estimates. For example, the test set in a time
series often comes from the last periods of the data instead of earlier
ones to avoid looking into the future.

2. Proxy for Future Performance: The test set functions as a stand-in
for future, unseen data, providing an unbiased estimate of how well
the model is expected to perform on new data drawn from the same
underlying distribution P(x, y). Although the test set is intended
to reflect future performance, it is important to acknowledge that it
may not capture all possible variations due to factors such as data
drift, where the distribution of incoming data may change over time.

Once the test set Dtest has been allocated, the remaining data

Dtrain-val = (Xtrain-val,ytrain-val)

is typically further subdivided into a training set and a validation set. The
training set, denoted as

Dtrain = (Xtrain,ytrain),

Classical Perspectives on Generalization 79

is used exclusively for model fitting and parameter estimation, while the val-
idation set,

Dval = (Xval,yval),

is utilized for hyperparameter tuning, model selection, and performance mon-
itoring during the training process. It also serves as a proxy to the future test
set but is available for model selection purpose.

Formally, the partitioning of the dataset can be expressed as:

Dtrain ∪ Dval ∪ Dtest = D,

with the subsets satisfying the mutual exclusivity condition:

Dtrain ∩Dval = Dtrain ∩ Dtest = Dval ∩ Dtest = ∅.

This careful and deliberate splitting of the dataset is crucial for obtaining
a reliable estimate of the model’s performance on future data. By strictly
separating training and evaluation processes, we ensure that the assessment
of generalization capability is both fair and robust, ultimately leading to more
trustworthy and effective machine-learning models.

3.2.3 Selection bias and cross-validation

There exists an inherent risk of selection bias when partitioning a dataset into
training, validation, and test sets. The specific manner in which the dataset is
split may inadvertently favor certain patterns in the data, leading to models
that perform well on the validation and test sets by chance rather than by
virtue of true generalization. Such bias can result in overly optimistic perfor-
mance estimates if not properly addressed.

To mitigate this risk, cross-validation techniques are widely employed.
Cross-validation systematically partitions the data into multiple distinct train-
ing and validation sets, ensuring that the model’s performance is evaluated
consistently across various subsets. This approach reduces the likelihood of
overfitting to any particular data split and yields a more robust and reliable
estimate of the model’s generalization capability on unseen data.

The proportion of data allocated to each subset often depends on the
overall size and characteristics of the dataset. For smaller datasets, a common
heuristic is to allocate approximately 60% for training, 20% for validation, and
20% for testing (i.e., a 6:2:2 split). Conversely, for larger datasets, a typical
split might be 80% for training, 10% for validation, and 10% for testing (i.e.,
an 8:1:1 ratio). These ratios are merely guidelines and can be adjusted to suit
the specific requirements of the task and the inherent variability of the data.

Figure 3.2 illustrates three different methods for splitting the same dataset
into training, validation, and test sets. In this setup, the training set is used to
optimize the model parameters, the validation set assists in hyperparameter
tuning and model selection, and the test set serves as an (hopefully) unbiased
benchmark for evaluating the model’s generalization performance.

80 Deep Learning Generalization

FIGURE 3.2
Three different ways of splitting the same dataset into training, validation,
and test set.

To further illustrate the train-test split procedure, consider a toy dataset.
The following Python code snippet creates a simple set of input features and
corresponding target values and then splits the data into training and test
sets according to a predefined ratio.

1 import random

2 import numpy as np

3 import matplotlib .pyplot as plt

4

5 # Reshape to a column representation; -1 infers the number of

rows automatically

6 X = np.array (range (10)).reshape (-1, 1) # Input features

7 y = np.array ([1.5 , 2.5, 3.7, 3.8, 5.1, 5.8, 6.2, 5.6, 5.2, 5.3]).

reshape (-1, 1)

8

9 # Define the split ratio for the training set

10 train_ratio = 0.8

11

12 # Randomly sample indices for the training set

13 train_idx = random .sample (range (len (X)), int (train_ratio * len (X)

))

14

15 # Allocate training set based on selected indices

16 X_train = X[train_idx]

17 y_train = y[train_idx]

18

19 # Allocate test set based on indices not included in the training

set

Classical Perspectives on Generalization 81

20 X_test = X[[idx for idx in range (len (X)) if idx not in train_idx

]]

21 y_test = y[[idx for idx in range (len (X)) if idx not in train_idx

]]

Listing 3.3
Train-Test Split Using a Toy Dataset.

In this example, the dataset X consists of integers from 0 to 9 reshaped
into a column vector, while y contains the corresponding target values. An
80% training split is implemented by randomly selecting indices via Python’s
random.sample() function. The remaining indices form the test set. Although
the validation set is not explicitly shown in this code, it is instrumental for
hyperparameter tuning.

It is important to note that while the validation set is critical for model
tuning, there is a risk of overfitting to this set if the model becomes overly
specialized to its specific characteristics. To address this concern, cross-
validation methods such as k-fold cross-validation are employed. In k-fold
cross-validation, the dataset is divided into k equally sized folds. The model is
then trained k times, each time using k−1 folds for training and the remaining
fold for validation. The average performance across all k iterations provides a
robust estimate of the model’s generalization ability.

Furthermore, nested cross-validation extends this concept by incorporat-
ing an inner loop for hyperparameter tuning within each outer fold. This
approach prevents bias in the performance estimates due to the hyperparam-
eter selection process, resulting in an even more accurate assessment of model
generalization.

Platforms such as Kaggle try to mitigate the risk of selection bias by
withholding the test set until the final evaluation phase, thereby preventing
participants from tuning their models based on exposed test set performance,
which is displayed in the public leaderboard. This practice is crucial in avoiding
data leakage and ensuring a fair assessment of the model’s true generalization
capabilities.

In summary, careful management of selection bias through proper dataset
partitioning and the use of cross-validation techniques is essential to obtain
reliable performance estimates. These practices not only help prevent overfit-
ting but also ensure that the model’s performance on future, unseen data is
accurately evaluated.

3.3 The Model

In the context of linear regression, the model is defined by both a set of
parameters and an architectural structure that collectively determine how the
input features interact to produce predictions. The parameters, often referred

82 Deep Learning Generalization

to as weights, are scalar values that are adjusted during the training process
to optimize the model’s performance. Our primary goal is to determine the
optimal set of weights that best maps the input features X to the target values
y.

Let
w = [w1, w2, . . . , wp]

⊤

denote the weight vector corresponding to the p input features in X. Each
weight wj modulates the influence of the corresponding feature xj on the pre-
diction. In essence, wj quantifies the contribution of xj to the final prediction
output ŷ. The objective is to find the optimal set of weights w∗ that mini-
mizes a predefined cost function, typically the MSE, ensuring that the model
predictions closely approximate the true target values.

The architecture of the model dictates the functional relationship between
the input features and the weights. In linear regression, we typically assume
the following linear generative process:

y = f(X;w) + ǫ,

where the function
f(X;w) = Xw

represents the deterministic component of the model. Here, X is the matrix
of input features, and w is the vector of weights. The term ǫ denotes additive
random noise, which is commonly assumed to be uncorrelated with X and
normally distributed with zero mean and a fixed variance σ2, that is, ǫ ∼
N (0, σ2).

For a single observation, the model’s prediction is given by:

ŷ(i) = x(i)⊤w,

where x(i) represents the i-th row of X (i.e., the feature vector corresponding
to the i-th observation). This formulation explicitly shows that the prediction
is a weighted sum of the input features.

To recap, the model architecture serves as a prediction function that maps
the input featuresX and weightsw to the predicted outputs ŷ. Using compact
matrix notation, this relationship is succinctly expressed as:

ŷ = f(X;w) = Xw.

This is a parametric model because the function f is completely parameter-
ized by the weight vector w. While the input X is fixed based on the train-
ing data, w represents the tunable parameters that are iteratively optimized
during the training process. Furthermore, this framework not only underpins
linear regression but also provides the foundation for more complex models
where additional layers and nonlinearities are introduced to capture intricate
patterns within the data.

Classical Perspectives on Generalization 83

3.3.1 Parametric versus non-parametric models

A parametric model is characterized by a fixed and typically small number of
parameters that do not grow with the size of the dataset. In such models, the
functional form of the relationship between the input features and the target
variable is predetermined. Linear regression is a canonical example of a para-
metric model due to its explicit linear structure and limited parameter count.
In this framework, the model assumes that the output is a linear combina-
tion of the input features, and the number of parameters remains constant
regardless of the amount of available data.

In contrast, a non-parametric model does not assume a fixed form for the
function f that maps inputs to outputs. Instead, it is capable of adapting
its complexity to the underlying data, potentially employing an unbounded
number of parameters as more data become available. This flexibility allows
non-parametric models to capture complex and nonlinear relationships in-
herent in the data. For instance, deep neural networks are often considered
non-parametric due to their vast number of parameters and their ability to
learn intricate representations, even though they technically adhere to a de-
fined architecture.

It is also instructive to review the matrix multiplication process, which
plays a central role in the formulation of linear regression. Recall that a matrix
is defined by its dimensions, where a matrix with shape (n, p) has n rows and
p columns. Given two matrices A ∈ R

n×p and B ∈ R
q×k, the product AB is

defined only if the inner dimensions match (i.e., p = q). The resulting matrix
C = AB will then have the shape (n, k).

In linear regression, the prediction is obtained by multiplying the design
matrix X by the weight vector w. This operation is succinctly represented as:

ŷ = Xw,

where X ∈ R
n×p contains the input features, and w ∈ R

p contains the cor-
responding weights. This formulation emphasizes the parametric nature of
linear regression, as the mapping of inputs to outputs is entirely determined
by the finite set of parameters in w.

Overall, the distinction between parametric and non-parametric models is
important in understanding model flexibility and capacity. Parametric models
offer simplicity and interpretability with a fixed number of parameters, while
non-parametric models provide greater adaptability to complex patterns in
the data. Recognizing these differences is crucial when selecting an appropri-
ate model for a specific task, as it directly influences the model’s ability to
generalize to new, unseen data.

3.3.2 The bias trick

In linear regression, a bias term w0 is often incorporated into the model to ac-
count for the intercept, enabling the model to fit data that do not necessarily

84 Deep Learning Generalization

pass through the origin. Including this bias term modifies the prediction equa-
tion to:

ŷ = w0 +Xw,

where X represents the design matrix containing the input features and w is
the weight vector associated with these features.

A common technique to simplify the model representation and computa-
tion is known as the bias trick. This method involves augmenting the design
matrix X by adding an additional column of ones. By doing so, the bias term
w0 is absorbed into the weight vector, allowing the prediction to be expressed
as a single matrix-vector multiplication. Specifically, the augmented design
matrix, denoted by Xnew, is defined as:

Xnew =









1 x
(1)
1 x

(1)
2 . . . x

(1)
p

1 x
(2)
1 x

(2)
2 . . . x

(2)
p

...
...

...
. . .

...

1 x
(n)
1 x

(n)
2 . . . x

(n)
p









,

where x
(i)
j denotes the value of the j-th feature for the i-th observation. Cor-

respondingly, the weight vector is augmented to include the bias term:

wnew =










w0

w1

w2

...
wp










.

Thus, the prediction function can now be succinctly written as:

ŷ = Xnewwnew.

To implement this prediction function, one begins by augmenting the de-
sign matrixX with a column of ones. The weight vectorw (which now includes
the bias term) is typically initialized with random values, often drawn from
a standard normal distribution. The predicted values are then computed via
matrix-vector multiplication. For example, the following Python code demon-
strates this process:

1 import numpy as np

2 import matplotlib .pyplot as plt

3

4 # Augment the design matrix by adding a column of ones to account

for the bias term

5 X_new = np.hstack ((np.ones_like (X), X))

6

7 # Initialize a random set of weights , including the bias term

8 w = np.random .normal (0, 1, (X_new .shape [1], 1))

9

Classical Perspectives on Generalization 85

10 # Compute the predictions via matrix -vector multiplication

11 f = X_new @ w

Listing 3.4
Implementation of the Bias Trick in Python.

In the code above, the augmented matrix Xnew now contains an extra
column that represents the bias term, while w includes both w0 and the other
weights w1, w2, . . . , wp. For instance, if the model has only one feature (apart
from the bias), the weight vector will have two parameters: the intercept w0

and the slope w1. Consequently, the model prediction becomes a straight line
determined by these two parameters.

To further illustrate this concept, consider the following snippet that visu-
alizes the initial, unoptimized model by plotting the training data along with
the prediction line based on the randomly initialized weights:

1 # Create a list of equally spaced input values for plotting

2 X_vals = np.linspace (X.min (), X.max (), 100)[:, np.newaxis]

3

4 # Augment the input values with a column of ones

5 X_vals_new = np.hstack ((np. ones_like (X_vals), X_vals))

6

7 # Generate predictions using the current weights

8 y_vals = X_vals_new @ w

9

10 # Plot the training data and the model ’s prediction line

11 fig , ax = plt.subplots ()

12 ax.scatter (X, y, c=’black ’)

13 ax.set_xlabel (’x’)

14 ax.set_ylabel (’y’)

15 ax.plot(X_vals , y_vals , linewidth =2)

16 plt .show()

Listing 3.5
Visualizing the Initial Model.

As shown in the resulting plot (referenced in Figure 3.3), the initial model
is represented by a straight line based on the randomly initialized weights. At
this stage, the line does not fit the training data well. However, in subsequent
steps, the model’s weights will be optimized—either through closed-form so-
lution (called normal equation for linear regression) or iterative methods such
as gradient descent—to minimize a cost function, thereby improving the fit to
the training data and enhancing generalization to unseen data.

3.4 The Cost Function

Almost every machine-learning algorithm relies on a feedback mechanism
to assess the quality of its predictions and guide subsequent updates. This

86 Deep Learning Generalization

FIGURE 3.3
The initial model as represented by the straight line.

feedback is provided by the cost function, which quantifies the error intro-
duced by the current model. In essence, the cost function evaluates how closely
the model’s predictions align with the actual target values, thereby serving as
a critical tool for iterative model improvement and parameter optimization.

In the context of linear regression, the cost function measures the good-
ness of fit of the model to the training data. For a given input-output pair
(x(i), y(i)), where x(i) ∈ R

d represents the input feature vector and y(i) ∈ R is
the corresponding target value, the model’s prediction can be denoted as

ŷ(i) = f(x(i);w).

The residual for the i-th data point is then defined as

r(i) = y(i) − ŷ(i) = y(i) − f(x(i);w).

These residuals represent the vertical distances between the model’s predic-
tions and the actual data points, serving as indicators of prediction errors.

A widely used method to aggregate these residuals is the Sum of Squared
Errors (SSE), defined as:

SSE(w) =

n∑

i=1

(

y(i) − f(x(i);w)
)2

=

n∑

i=1

(

r(i)
)2

.

The SSE has several desirable properties: it is nonnegative, differentiable, and,
by squaring the residuals, it disproportionately penalizes larger errors. This
characteristic encourages the model to focus on reducing significant discrep-
ancies between predictions and actual values.

An alternative to SSE is the MSE, which normalizes the SSE by dividing
by the number of observations:

MSE(w) =
1

n

n∑

i=1

(

y(i) − f(x(i);w)
)2

=
1

n
SSE(w).

While both SSE and MSE yield the same optimal weight estimates, MSE is
often preferred as it provides a more interpretable measure of the average
prediction error.

Classical Perspectives on Generalization 87

Both SSE and MSE are instances of the cost function Q(w), which is
defined solely as a function of the model’s weights w, independent of the fixed
design matrix X. Our goal is thus to find the weights w that correspond to
the smallest Q(w).

This cost function can also be elegantly expressed using linear algebra. Let
Φ denote the design matrix augmented with a column of ones to incorporate
the bias term:

Φ =








1 x(1)⊤

1 x(2)⊤

...
...

1 x(n)⊤







∈ R

n×(p+1),

and let the augmented weight vector be

w =










w0

w1

w2

...
wp










∈ R
(p+1)×1.

With these definitions, the predictions for all n observations can be succinctly
written as:

ŷ = Φw.

Thus, the cost function takes the form:

Q(w) = (y −Φw)⊤(y −Φw) = y⊤y − 2y⊤Φw+w⊤Φ⊤Φw.

This quadratic form is particularly advantageous for optimization because its
smoothness and differentiability allow for the derivation of closed-form solu-
tions (e.g., via the Normal Equation) and the efficient application of iterative
methods such as gradient descent.

To implement the cost function in Python, one typically calculates the
residuals and then computes their sum of squares using NumPy’s dot product
functionality. For example:

1 import numpy as np

2

3 # Calculate the residuals between actual target values y and

predictions f

4 resid = y - f

5

6 # Compute the total cost as the dot product of the residual

vector with itself

7 Q = np.dot(resid.T, resid)

8 print (Q)

9 # Expected Output (example):

10 # array ([[58.46752305]])

Listing 3.6
Implementing the Cost Function in Python.

88 Deep Learning Generalization

In this snippet, the residuals are computed by subtracting the predicted
values ŷ from the actual target values y. The total cost Q is then obtained by
taking the dot product of the residual vector with itself, effectively summing
the squared residuals. This implementation highlights the practical utility of
the cost function in quantifying model error and guiding the optimization
process.

3.5 The Optimization Algorithm

Optimization is a fundamental component of all learning algorithms, serving
as the central mechanism by which models iteratively improve their perfor-
mance. In essence, optimization involves adjusting the model parameters to
minimize the cost function, thereby reducing prediction errors and enhancing
the model’s overall accuracy.

The central goal of optimization in machine learning is to determine the
optimal set of parameters that minimizes the cost function. Formally, given
a cost function Q(w) defined over the model’s weight vector w, the optimal
weight vector w∗ is given by

w∗ = argmin
w

Q(w).

This expression says that w∗ is the point at which the cost function attains
its minimum value. At this minimum, the derivative of the cost function with
respect to the weights is zero, indicating that the function is at a stationary
point.

In the case of multiple features, reaching a stationary point implies that
the gradient vector of the cost function with respect to all weights vanishes.
The gradient vector, denoted by ∇wQ, comprises the partial derivatives of Q
with respect to each individual weight wj :

∇wQ =









∂Q
∂w1
∂Q
∂w2

...
∂Q
∂wp









= 0.

For linear regression, we know that the cost function can be expressed in the
quadratic form

Q(w) = y⊤y − 2y⊤Φw +w⊤Φ⊤Φw,

where Φ is the design matrix (often augmented to include a column of ones
for the bias term) and y is the vector of target values.

Classical Perspectives on Generalization 89

A key component of this cost function is the quadratic term w⊤Φ⊤Φw.
Differentiating this term with respect tow using the chain rule and recognizing
that Φ⊤Φ is symmetric, we obtain:

∂

∂w

(

w⊤Φ⊤Φw
)

= 2Φ⊤Φw.

Taking into account the entire cost function, the gradient of Q(w) with respect
to w is therefore given by:

∇wQ = −2Φ⊤y + 2Φ⊤Φw.

Setting this gradient equal to zero to locate the stationary point yields:

−2Φ⊤y + 2Φ⊤Φw = 0.

Dividing through by 2 simplifies the equation to:

Φ⊤Φw = Φ⊤y.

This expression is known as the Normal Equation, which provides a closed-
form solution for the optimal weights:

w∗ =
(

Φ⊤Φ
)−1

Φ⊤y,

assuming that Φ⊤Φ is invertible.
In addition, it is important to note that the cost function Q(w) for linear

regression is convex. This convexity guarantees that any stationary point is
a global minimum, thereby simplifying the optimization process. In practice,
however, iterative methods such as gradient descent are frequently employed,
especially when dealing with large datasets where computing the closed-form
solution may be computationally expensive.

To sum up, the optimization algorithm in linear regression seeks to find the
weight vector w∗ that minimizes the cost function Q(w). By setting the gra-
dient of the cost function to zero and solving the resulting Normal Equation,
one obtains a closed-form solution that forms the backbone of the learning
process, enabling the model to make increasingly accurate predictions.

3.5.1 Multiple minima and convexity

In optimization, the goal is to find the global minimum of the cost function
Q(w). However, the landscape of Q(w) may contain several stationary points
where the gradient is zero. When ∇Q(w) = 0, one of the following scenarios
can occur:

1. Global Optimum: This is the unique point where the cost function
reaches its absolute minimum value. In convex functions, the global
optimum is the only stationary point, ensuring that any algorithm
converging to a zero gradient has found the best possible solution.

90 Deep Learning Generalization

FIGURE 3.4
Three different scenarios when locating the global minimum.

2. Local Optimum: In non-convex functions, multiple local minima
can exist. A local optimum is a point where the cost function has
a minimum value within a localized region, yet it may not be the
lowest value over the entire domain. Distinguishing between a local
and a global minimum in such cases can be challenging.

3. Saddle Point: A saddle point is a stationary point where the gradient
vanishes, but the point is neither a true minimum nor a maximum.
Instead, the function exhibits mixed curvature—acting like a min-
imum in some directions and a maximum in others. Saddle points
can mislead optimization algorithms, particularly those based on
gradient descent, into halting progress toward the global optimum.

Figure 3.4 illustrates these three scenarios. In the left panel, a convex
function is depicted where the only stationary point is the global minimum.
The middle panel shows a non-convex function with multiple local minima,
while the right panel illustrates a flat region containing several saddle points.
Although all these points satisfy ∇Q(w) = 0, only the global optimum rep-
resents the absolute lowest cost.

In linear regression, the cost function Q(w) is convex due to the quadratic
nature of its formulation. This convexity guarantees that the stationary point
obtained from the Normal Equation is the unique global minimum. Recall
that the Normal Equation is given by:

Φ⊤Φw = Φ⊤y,

which leads to the closed-form solution:

w∗ =
(

Φ⊤Φ
)−1

Φ⊤y.

Furthermore, the Hessian matrix of the cost function is:

∇2Q(w) = 2Φ⊤Φ.

Classical Perspectives on Generalization 91

Since Φ⊤Φ is positive definite, the Hessian is also positive definite, confirm-
ing that the curvature of Q(w) is uniformly upward. This positive curvature
ensures that the stationary point is indeed a unique global minimum.

Model training generally involves iteratively updating the weight vector
using algorithms such as gradient descent. However, when a closed-form solu-
tion is available, as in linear regression, the optimization process reduces to a
single calculation, obviating the need for iterative updates. In many real-world
applications, though, especially with complex and non-convex cost functions,
closed-form solutions are not feasible. In such cases, iterative methods become
indispensable.

The following Python implementation demonstrates how this closed-form
solution is applied:

1 import numpy as np

2

3 # Solve for the optimal weight vector using the Normal Equation

4 w_star = np.linalg .solve (X_new .T @ X_new , X_new .T @ y)

5

6 # Generate model predictions with the optimal weights

7 f_star = X_new @ w_star

8

9 # Calculate the residuals with the optimal weights

10 resid = y - f_star

11

12 # Calculate the cost with the optimal weights

13 Q = np.dot(resid.T, resid)

14 print (Q)

15 # Output :

16 # array ([[6.33963636]])

Listing 3.7
Computing the Optimal Weights Using the Normal Equation.

In this code, we first compute the optimal weight vector w∗ by solving
the Normal Equation. We then generate the corresponding predictions ŷ∗ by
multiplying the augmented design matrix Xnew with w∗. The residuals are
calculated by subtracting these predictions from the actual target values, and
finally, the cost Q is determined as the dot product of the residual vector
with itself. Notably, the cost Q decreases significantly from its initial value,
indicating that the model’s performance has improved after optimization.

To further illustrate the effect of this optimization, we can visualize the
fitted line. The following code snippet plots the training data along with the
regression line obtained using the optimal weights:

1 import matplotlib .pyplot as plt

2

3 # Create a range of input values for plotting the fitted line

4 X_vals = np.linspace (X.min (), X.max (), 100)[:, np.newaxis]

5

6 # Add a column of ones to the input values for the bias term

7 X_vals_new = np.hstack ((np. ones_like (X_vals), X_vals))

8

92 Deep Learning Generalization

9 # Generate predictions using the optimal weights

10 y_vals = X_vals_new @ w_star

11

12 # Plot the training data and the fitted line

13 fig , ax = plt.subplots ()

14 ax.scatter (X, y, c=’black ’)

15 ax.set_xlabel (’x’)

16 ax.set_ylabel (’y’)

17 ax.plot(X_vals , y_vals , linewidth =2)

18 plt .show()

Listing 3.8
Visualizing the Fitted Line Using Optimal Weights.

Figure 3.5 displays the linear regression fit based on the closed-form solu-
tion, clearly demonstrating a close alignment between the fitted line and the
training data points.

FIGURE 3.5
Linear regression fit using the closed-form solution.

Overall, the convex nature of the cost function in linear regression guaran-
tees the uniqueness of the global minimum, which can be efficiently obtained
using the closed-form solution provided by the Normal Equation. However,
it is important to acknowledge that the computation of the closed-form solu-
tion may become expensive in practice. In particular, the matrix Φ⊤Φ can
be very large and dense, rendering the storage and inversion of this matrix
computationally intensive or even infeasible in certain scenarios.

Understanding the gradient, the nature of stationary points, and the con-
ditions for convexity are crucial to understanding how optimization algorithms
navigate the cost landscape. While closed-form solutions are both elegant and
effective for linear models, many complex models lack such solutions and,
therefore, rely on iterative and computationally efficient optimization tech-
niques such as gradient descent.

3.5.2 The gradient descent algorithm

Gradient descent is one of the most fundamental optimization algorithms in
machine learning, playing a critical role in the minimization of cost functions.

Classical Perspectives on Generalization 93

It is widely adopted because it can iteratively adjust the model’s parameters
(commonly referred to as weights) in the direction that most effectively reduces
the cost, thereby incrementally improving the model’s predictive performance.
Even though this algorithm may sometimes converge to local minima or be-
come trapped at saddle points when dealing with non-convex cost functions, it
remains the most prevalent optimization technique—especially in the domain
of deep learning.

The operation of gradient descent is based on the principle of using the
gradient of the cost function as a guide to navigate the parameter space toward
a minimum. Specifically, consider a differentiable cost function Q(w) with
respect to the weight vector w. The gradient descent algorithm updates the
weight vector by moving it in the opposite direction of the gradient at the
current point. This process can be expressed by the following update rule:

w← w − η∇Q(w),

where η is the learning rate, a small positive scalar that determines the step
size for each update, and ∇Q(w) denotes the gradient of the cost function
evaluated at w.

The rationale behind this update rule is that the gradient vector points in
the direction of the steepest ascent on the cost surface. By moving in the op-
posite direction, the algorithm ensures that the cost function decreases most
rapidly. The learning rate η is an important hyperparameter because it con-
trols the magnitude of each step: if η is too large, the updates may overshoot
the minimum, while if it is too small, the convergence process becomes exces-
sively slow.

When visualizing the cost function Q(w) as a function of the weights, one
can observe that the gradient vector at any point points toward the steepest
increase in cost. Consequently, by taking steps in the reverse direction of this
gradient, the gradient descent algorithm efficiently navigates the parameter
space toward a local or global minimum. This simple yet powerful mechanism
is at the heart of many modern machine-learning algorithms.

Figure 3.6 illustrates the gradual descent update process in a univariate
linear regression scenario, where the cost function is dependent on a single
weight parameter. In this visualization, various starting points are shown, each
demonstrating how the algorithm iteratively converges toward the minimum.
With every iteration, the weight parameter is adjusted, moving it closer to
the optimal value, thereby progressively reducing the overall cost.

Let us look at the gradient descent update rule in more detail via a simple
example. Consider a linear regression model with one feature. The model
predicts the target value for the i-th observation using the equation:

ŷ(i) = w0 + w1xi,

where w0 is the intercept (or bias term) and w1 is the slope, representing the
weight associated with the feature xi. The error for each observation, also

94 Deep Learning Generalization

FIGURE 3.6
Gradient descent update rule.

known as the residual, is given by:

r(i) = yi − ŷ(i) = yi − (w0 + w1xi).

The performance of the model is quantified by the SSE cost function:

Q(w) =

n∑

i=1

(yi − w0 − w1xi)
2
.

Our objective is to determine the optimal weights w∗
0 and w∗

1 that minimize
Q(w).

To achieve this, we can use gradient descent, which requires us to first
compute the gradients of the cost function with respect to each weight. The
partial derivative of the cost function with respect to w0 is:

∂Q

∂w0
= −2

n∑

i=1

(yi − w0 − w1xi) ,

and the partial derivative with respect to w1 is:

∂Q

∂w1
= −2

n∑

i=1

xi (yi − w0 − w1xi) .

These gradient expressions provide insight into how small changes in each
weight affect the cost function. The negative signs indicate that moving in the
opposite direction of the gradient will result in a decrease in the cost.

Classical Perspectives on Generalization 95

Using these gradients, the update rules for the weights are formulated as:

w0 ← w0 − η

(
∂Q

∂w0

)

= w0 + 2η

n∑

i=1

(yi − w0 − w1xi) ,

w1 ← w1 − η

(
∂Q

∂w1

)

= w1 + 2η
n∑

i=1

xi (yi − w0 − w1xi) ,

where η is the learning rate—a small positive scalar that determines the size
of each update step. For practical computational purposes, the constant fac-
tor 2 can be absorbed into the learning rate, thereby simplifying the update
expressions.

At a higher level, gradient descent treats each set of weights w = (w0, w1)
as a point in a two-dimensional parameter space. Associated with each point
is a cost Q(w). The algorithm then iteratively adjusts these weights, mov-
ing them in the direction that leads to lower cost values, with the ultimate
goal of converging to the global minimum of the cost function. In the con-
text of univariate linear regression, this relationship can be visualized as a
three-dimensional landscape: the x-axis represents the intercept w0, the y-
axis represents the slope w1, and the z-axis corresponds to the cost Q(w).
Different initial starting points on this “mountain” illustrate how gradient de-
scent navigates the cost surface, ultimately settling at the lowest point, which
represents the optimal set of weights.

In the following code listing, we first create arrays of candidate values for
both w0 and w1 (the intercept and slope, respectively). These candidate values
are generated around the optimal weights w∗ obtained from a previous com-
putation, and they allow us to evaluate the cost function Q for each unique
combination of parameters. In addition, we calculate the partial derivatives
(gradients) of the cost function at an initial starting point. This detailed eval-
uation helps us understand the behavior of the cost function in the parameter
space.

1 # Create an array of 100 linearly spaced values around the

optimal intercept value

2 w0_vals = np.linspace (w_star [0] - 3, w_star [0] + 3, 100)

3

4 # Create an array of 100 linearly spaced values around the

optimal slope value

5 w1_vals = np.linspace (w_star [1] - 1, w_star [1] + 1, 100)

6

7 # Generate a grid of values to evaluate the cost function across

the parameter space

8 w0_grid , w1_grid = np.meshgrid (w0_vals , w1_vals)

9

10 # Initialize a grid to store the computed cost values for each (

w0 , w1) pair

11 Q_grid = np.zeros ((100 , 100))

12 for i in range (Q_grid .shape [0]):

13 for j in range (Q_grid .shape [1]):

96 Deep Learning Generalization

14 Q_grid [i, j] = ((y - w0_grid [i, j] - w1_grid [i, j] * X)

**2).sum ()

15

16 # Compute the partial derivative of the cost function with

respect to w0 (intercept)

17 w0_grad = -2 * (y - w[1] * X - w[0]).sum ()

18

19 # Compute the partial derivative of the cost function with

respect to w1 (slope)

20 w1_grad = -2 * (X * (y - w[1] * X - w[0])).sum ()

Listing 3.9
Evaluating the Cost Function and Gradients for Candidate Parameters.

In the code above, we generate a set of linearly separated candidate values
for w0 and w1 by using the NumPy function np.linspace(). These arrays
are then combined into a grid with np.meshgrid(), allowing us to compute
the cost function Q at each point in the parameter space. The cost at each
grid point is computed by summing the squared differences between the actual
target values y and the predicted values, based on the candidate parameters.
Additionally, we compute the partial derivatives for both w0 and w1 at the
current starting point, which will guide the update direction in Gradient De-
scent.

We then visualize the cost function using a contour plot. In this plot, each
dashed line represents a level curve of equal cost, providing a clear depiction
of the cost landscape with respect to the two parameters. The initial starting
point is marked with a star, and an arrow indicates the direction of the next
update, which corresponds to the steepest descent path toward a local (or
global) minimum. Figure 3.7 (not shown here) displays this contour plot,
where the dashed lines represent equal-cost contours, the star marks the initial
weights, and the arrow indicates the direction of the first update step.

To summarize, the overall algorithm follows these steps to implement the
gradient descent:

1. Initialize Weights: Start with random values for w0 and w1.

2. Compute Predictions: Calculate the predicted values ŷ(i) using the
current weights.

3. Calculate Residuals: Determine the differences between the actual
target values and the predictions.

4. Compute Gradients: Calculate the partial derivatives of the cost
function with respect to each weight.

5. Update Weights: Adjust the weights by moving them in the direc-
tion opposite to the gradients (i.e., the direction of the steepest
descent).

6. Iterate: Repeat the process until a convergence criterion is met, such
as a minimal change in the cost function.

Classical Perspectives on Generalization 97

FIGURE 3.7
Contour plot of the cost as a function of two parameters.

This approach of updating the weights by following the negative gradient
ensures that the algorithm moves toward regions of lower cost, analogous to
descending a valley in a mountainous landscape. The contour plot provides a
visual representation of this process, where the weights gradually move toward
the minimum cost region with each update.

The following code performs Gradient Descent updates and visualizes the
parameter updates at regular intervals.

1 import numpy as np

2 import matplotlib .pyplot as plt

3

4 # Initialize weights randomly with a fixed seed for

reproducibility

5 np.random .seed (42)

6 w = np.random .randn (2, 1) # [w0 , w1]

7

8 # Define hyperparameters

9 learning_rate = 0.01

10 max_iters = 1000

11

12 # Initialize a list to store the history of cost values

13 cost_history = []

14

15 # Setup the plot for visualization of the cost landscape

16 fig , ax = plt.subplots ()

17 cp = ax.contour (w0_grid , w1_grid , Q_grid , colors =’black ’,

linestyles =’dashed ’,

98 Deep Learning Generalization

18 levels =[0, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256,

512])

19 ax.plot(w[0], w[1], ’g*’, markersize =10) # Plot the initial

weights as a star

20 plt .clabel (cp , inline =True , fontsize =10)

21 plt .xlabel (’w0’)

22 plt .ylabel (’w1’)

23

24 for i in range (max_iters):

25 # Compute predictions using the current weights

26 predictions = X_new @ w

27

28 # Calculate the residuals (errors) between the true values

and predictions

29 resid = y - predictions

30

31 # Compute the gradients of the cost function with respect to

w0 and w1

32 w0_grad = -2 * np.sum (resid)

33 w1_grad = -2 * np.sum (X * resid)

34

35 # Update the weights by moving in the opposite direction of

the gradients

36 w[0] = w[0] - learning_rate * w0_grad

37 w[1] = w[1] - learning_rate * w1_grad

38

39 # Compute the current cost and append it to the cost history

40 cost = np.dot(resid.T, resid)

41 cost_history.append (cost [0][0])

42

43 # Plot the current weight values every 100 iterations to

visualize the update path

44 if i % 100 == 0:

45 ax.plot(w[0], w[1], ’g*’, markersize =10)

46

47 plt .show()

Listing 3.10
Gradient Descent Updates and Parameter Visualization.

The code above performs gradient descent updates and visualizes the pa-
rameter updates at regular intervals. Specifically, it initializes the weights
randomly and then iteratively refines them by computing the predictions, cal-
culating the residuals, evaluating the gradients, and updating the weights ac-
cordingly. At each iteration, the cost is computed and stored in cost history.
The visualization is achieved by plotting the weight values on a contour map
of the cost function; here, dashed contour lines represent loci of equal cost,
and stars mark the progression of weight updates. As shown in Figure 3.8,
the resulting figure illustrates how the weights converge toward the minimum,
with the star representing the history of the weight values along the descent
path.

To determine when the algorithm should stop updating the weights, the
gradient descent algorithm uses one or more stopping criteria, such as:

Classical Perspectives on Generalization 99

FIGURE 3.8
History of gradient descent updates.

1. Maximum Iterations: The algorithm ceases after a predefined num-
ber of iterations have been completed.

2. Convergence Threshold: The algorithm stops when the change in
the cost function between consecutive iterations falls below a spec-
ified tolerance, indicating that further improvements are negligible.

3. Gradient Norm Threshold: The algorithm terminates when the
norm of the gradient vector ‖∇Q(w)‖ is less than a certain thresh-
old, suggesting that the current parameter values are sufficiently
close to a stationary point.

Here, introducing a small tolerance parameter can also ensure that the
optimization process terminates when additional updates yield minimal im-
provements, thereby preventing unnecessary computations. For instance, if
each update only results in a slight change in the parameters, the algorithm
can be stopped early based on an absolute or relative change in the param-
eter values being smaller than the preset tolerance, even before reaching the
maximum number of iterations.

3.5.3 Different types of gradient descent

Gradient descent is a powerful optimization algorithm, but its efficiency can be
significantly affected by the size of the dataset. When both the feature matrix

100 Deep Learning Generalization

X and the target vector y are large, calculating the gradient using the entire
dataset at every iteration can become extremely time-consuming and resource-
intensive. For example, financial transactional data often comprises millions
or even billions of records, making full dataset computations impractical. In
such cases, it is useful to consider methods that compute the gradient on only
a subset of the data, thereby reducing the computational burden while still
steering the model toward a minimum.

In the traditional approach known as Batch Gradient Descent, the gradient
is computed by summing the contributions from every training example. This
is expressed as:

∇Q(w) =

n∑

i=1

∇Qi(w) =

n∑

i=1

(
−2x(i)

)(
y(i) −w⊤x(i)

)
,

Although this method computes an accurate gradient direction, it becomes
prohibitively slow and memory-intensive when n is very large. To address this
challenge, alternative strategies have been developed that work with smaller
subsets of the data. One such approach is Mini-Batch Gradient Descent, which
divides the dataset into smaller groups called mini-batches. Instead of calculat-
ing the gradient using the entire dataset or a single data point, the algorithm
computes the gradient over each mini-batch. This leads to the update rule:

w← w− η∇QB(w),

where for a mini-batch B ⊆ {1, 2, . . . , n},

∇QB(w) =
∑

i∈B

∇Qi(w) =
∑

i∈B

(
−2x(i)

)(
y(i) −w⊤x(i)

)
.

This approach strikes a balance between computational efficiency and con-
vergence stability. By averaging the gradients over a mini-batch, the method
reduces the noise inherent in single-sample estimates, leading to smoother
updates. Additionally, processing smaller batches requires less memory and
allows for parallelization on modern hardware like GPUs (Graphical Process-
ing Units), which can significantly speed up training.

Another widely used variant is stochastic gradient descent (SGD), which
updates the weights based on the gradient computed from a single randomly
chosen data point at a time. This method is exceptionally light on compu-
tational resources since it processes only one example per update. Although
the gradient computed from a single example is a noisy approximation of the
true gradient, this randomness is not entirely disadvantageous. The inherent
noise in the updates can help the algorithm escape local minima, potentially
leading to a more robust overall solution. In other words, while the path of
the weights during training might appear erratic, the stochastic fluctuations
can guide the optimization process toward better generalization (by jumping
out of local minima based on stochasticity in the gradient), particularly in the
context of very large datasets.

Classical Perspectives on Generalization 101

The intuition behind these methods revolves around balancing accuracy
with efficiency. Batch gradient descent provides accurate updates by leverag-
ing the entire dataset, but its practicality diminishes as data size increases.
SGD, while computationally efficient, may suffer from high variance in its
updates. Mini-batch gradient descent offers a compromise by combining the
stability of batch methods with the speed of stochastic methods. In practice,
the choice among these variants depends on factors such as dataset size, avail-
able computational resources, and the specific characteristics of the problem
at hand.

3.5.4 The stochastic gradient descent algorithm

SGD is a variation of the Gradient Descent algorithm that updates model
parameters using one randomly selected data point at a time. Unlike Batch
Gradient Descent, which computes the gradient over the entire dataset during
each iteration, SGD updates the parameters incrementally. This incremental
approach makes it especially useful in settings like online learning, where data
arrives continuously and immediate parameter updates are necessary without
processing the complete dataset at every step.

In Batch Gradient Descent, the gradient is calculated by summing the con-
tributions from all data points, ensuring that each update direction is based
on the complete picture of the error surface. However, this full-data approach
can be computationally expensive when handling large datasets. In contrast,
SGD computes the gradient using a single data point, which introduces ran-
domness into the optimization process. Although this randomness means that
each update is a noisy approximation of the true gradient, it also allows for
more frequent updates and can lead to faster convergence. Additionally, the
stochastic nature of SGD can help the algorithm escape local minima, poten-
tially steering the optimization toward a better overall solution.

Recall that Batch Gradient Descent follows the update rule

w← w − η∇Q(w) = w− η
n∑

i=1

∇Qi(w),

where the sum aggregates the gradient contributions from all n data points.
In contrast, SGD uses the update rule

w← w − η∇Qi(w),

where a single data point i is randomly selected at each iteration. This funda-
mental difference in computation leads to different convergence behaviors and
computational efficiencies. While the updates in SGD are noisier, this noise
can be beneficial by encouraging exploration of the error surface and helping
the model to avoid getting trapped in local minima.

To illustrate the SGD process, consider a univariate linear regression
model. The following example demonstrates how, in one round of SGD, a

102 Deep Learning Generalization

single randomly selected data point is used to compute the gradient and up-
date the model parameters:

1 import numpy as np

2

3 # Choose a random example

4 index = np.random .randint (X.shape [0] -1)

5

6 # Compute the gradients for the selected example

7 w0_grad = -2 * (y[index] - w[1] * X[index] - w[0])

8 w1_grad = -2 * (X[index] * (y[index] - w[1] * X[index] - w[0]))

9

10 # Update the parameters

11 w[0] = w[0] - learning_rate * w0_grad

12 w[1] = w[1] - learning_rate * w1_grad

Listing 3.11
Stochastic Gradient Descent Updates and Parameter Visualization.

In this example, the gradient is computed solely from the selected data
point, and the parameters w[0] and w[1] are updated accordingly. Under SGD,
a complete pass through the dataset—referred to as an epoch—requires n
such individual updates. Typically, training a model involves multiple epochs
to ensure convergence. Although the parameter trajectory under SGD is nois-
ier compared to the smooth path followed by Batch Gradient Descent, this
variability is a key asset. It allows the optimization process to explore the pa-
rameter space more widely and can ultimately lead to a more robust solution.

The intuition behind SGD lies in balancing computational efficiency with
effective exploration of the error surface. By making frequent, albeit noisy,
updates, SGD adapts quickly to changes in the data and can adjust the pa-
rameters in real-time. This is particularly advantageous in scenarios where
the dataset is massive or when the learning environment is dynamic. In many
practical applications, the benefits of rapid updates and the ability to bypass
suboptimal local minima outweigh the downsides of increased variance in the
parameter updates.

Figure 3.9 shows the parameter traveling path using SGD. Due to the
stochasticity in choosing the example for one step of SGD update, its traveling
path is clearly noisier than the path using full batch gradient descent.

Overall, the stochastic nature of SGD makes it a powerful and flexible op-
timization tool. Its ability to rapidly update parameters based on individual
data points enables faster convergence in large-scale and streaming data en-
vironments, while its inherent randomness provides a mechanism to navigate
complex error landscapes more effectively.

3.5.5 The impact of the learning rate

The learning rate, denoted by η, is a pivotal hyperparameter in the Gradient
Descent family of optimization algorithms. It governs the magnitude of each
step of update taken toward minimizing the cost function, and its careful

Classical Perspectives on Generalization 103

FIGURE 3.9
Parameter traveling path using SGD.

tuning is crucial to ensure efficient and effective convergence of the model
parameters. By determining how far the algorithm moves along the negative
gradient direction at each iteration, the learning rate directly influences the
pace and stability of the optimization process.

The learning rate serves a dual role in the update mechanism. First, it
establishes the direction of the update—the negative sign in the gradient de-
scent rule guarantees that adjustments move the weights in a direction that
reduces the cost function. Second, it controls the magnitude of these updates,
effectively scaling the computed gradient. This scaling is essential: if the up-
dates are too small, progress toward the minimum would be extremely slow,
while overly large updates can cause the algorithm to overshoot the minimum,
resulting in divergence or oscillatory behavior.

The choice of η thus significantly influences the overall performance of the
optimization. A learning rate that is too small results in very small changes
to the model parameters, causing the algorithm to require a large number of
iterations to approach the optimum. This slow convergence not only extends
training times but also increases computational costs, as more iterations are
needed to reduce the cost function to an acceptable level. Conversely, a learn-
ing rate that is too large can lead to aggressive updates, where the model
overshoots the minimum and may even increase the cost function. In some
cases, such large steps cause the parameters to oscillate around the mini-
mum without ever converging, making it difficult for the model to stabilize.
The intuition behind these dynamics is rooted in a delicate balance between

104 Deep Learning Generalization

FIGURE 3.10
Two possible scenarios with different learning rates.

precision and progress. The key is finding a balance where the learning rate
is sufficiently high to promote rapid convergence without compromising the
stability needed to accurately settle at the global minimum.

Figure 3.10 illustrates these two scenarios: the left panel shows how a small
learning rate leads to gradual and steady convergence, while another shows
that a large learning rate can result in divergence or erratic parameter updates.
These visual representations reinforce the idea that the learning rate not only
scales the update magnitude but also plays an integral role in determining the
overall trajectory of the optimization process.

To evaluate whether the learning rate is appropriately set, one effective
method is to plot the cost function Q(w) against the number of iterations.
This approach reveals the algorithm’s convergence behavior, making it clear
whether the chosen learning rate is guiding the model steadily toward the
minimum. A steady, consistent decrease in the cost indicates that the learning
rate is well-tuned and that the model is making regular progress. Conversely,
if the decrease in cost is very slow, it suggests that the learning rate might
be too small, leading to slow convergence and prolonged training times. An
increasing cost typically signals that the learning rate is too large, causing the
updates to overshoot the optimal point and leading to divergence. Similarly,
if the cost fluctuates significantly, this indicates oscillations, again a sign of an
excessively high learning rate. Figure 3.11 illustrates these scenarios by show-
ing cost curves corresponding to various learning rates, effectively highlighting
the different outcomes.

Selecting the right learning rate is a blend of art and science, often requiring
experimentation and fine-tuning specific to the problem and dataset at hand.
One common strategy is manual tuning: starting with a relatively small value,

Classical Perspectives on Generalization 105

FIGURE 3.11
Plotting the cost as a function of the number of iterations with different
learning rates.

such as η = 0.001, and gradually increasing it while monitoring the cost
function. This incremental approach helps identify the point at which the cost
begins to diverge, allowing one to adjust the learning rate based on observed
convergence behavior.

In addition to manual tuning, learning rate schedules offer systematic ap-
proaches for optimization. Fixed schedules maintain a constant learning rate
throughout the training process, while decaying schedules gradually reduce
the learning rate as training progresses, allowing the algorithm to fine-tune
parameters as it nears the minimum. Adaptive schedules go a step further
by modifying the learning rate in response to the model’s performance dur-
ing training. In addition, adaptive learning rate algorithms such as Adam,
RMSprop, and Adagrad dynamically adjust the learning rate for each pa-
rameter using historical gradients. These methods enhance convergence speed
and stability by automatically balancing the need for rapid progress with the
caution required to avoid overshooting.

3.6 Improving Predictive Performance

The predictive performance of a machine-learning model is intrinsically tied to
its complexity, which is often determined by the number of adjustable weights

106 Deep Learning Generalization

(parameters) within the model. An underfitting model typically has too few
weights, limiting its capacity to capture the underlying patterns in the data,
while an overfitting model contains an excessive number of weights, enabling it
to memorize the training data yet perform poorly on unseen data. To improve
predictive performance on the training set, one strategy is to increase the
effective number of adjustable weights, thereby enhancing the model’s capac-
ity to learn complex relationships. However, this approach must be carefully
calibrated using a validation set and subsequently evaluated on a test set to
ensure that the model generalizes well rather than simply memorizing the
training data.

In the context of a linear regression model, the weight vector w typically
contains two elements corresponding to the intercept and the slope. Such a
model predicts the target ŷ(i) for the i-th instance using the equation

ŷ(i) = w0 + w1x
(i)

where w0 represents the intercept (or bias term) and w1 is the weight associ-
ated with the feature x(i). This simple structure highlights how each compo-
nent of the model directly contributes to the prediction, which is one of the
reasons linear models are so valued for their interpretability.

Although linear models are favored for their explainability (since any
change in the prediction is directly and linearly related to changes in the
input feature), they often struggle to capture the nonlinear patterns that are
present in real-world data. To address this limitation while still retaining the
good interpretability of linear models, feature engineering can be used. By
generating additional features based on the original ones, feature engineering
expands the model’s capacity to fit more complex and nonlinear relation-
ships without compromising its inherently linear nature. This process allows
practitioners to transform or combine existing features in ways that reveal
underlying patterns that a simple linear model might otherwise miss.

One widely used technique to enlarge the feature space of linear regression
model is to create additional polynomial features based on existing ones.

3.6.1 Polynomial feature engineering

A common form of feature engineering is the use of polynomial basis func-
tions. By introducing polynomial terms, we can transform the original one-
dimensional feature space into a higher-dimensional space, enabling the model
to capture curvatures and nonlinear trends in the data. For example, enhanc-
ing the feature x(i) for the instance ith with its square (x(i))2 allows the model
to fit a quadratic curve:

ŷ(i) = w0 + w1x
(i) + w2(x

(i))2

Here, the weight vector w = [w0, w1, w2]
⊤ now contains three parameters, of-

fering greater flexibility in modeling the data by accounting for curvature and

Classical Perspectives on Generalization 107

FIGURE 3.12
A nonlinear curve fitting using polynomials up to the second degree.

more subtle variations. The quadratic transformation augments the original
feature space by adding a squared term, resulting in a new design matrix:

Φ(X) =








1 x(1) (x(1))2

1 x(2) (x(2))2

...
...

...
1 x(n) (x(n))2








This transformation not only expands the feature space but also enhances the
model’s capacity to capture more complex relationships within the data. The
prediction function becomes:

ŷ = Φ(X)w = w0 + w1x
(i) + w2(x

(i))2

By introducing polynomial features, the model is able to fit nonlinear
trends into the data. This increased flexibility can result in a lower SSE,
as the model can more accurately represent the underlying data patterns by
adapting to the curvature in the data. However, it is essential to balance this
flexibility to avoid overfitting, where the model becomes excessively tailored to
the training data and performs poorly on new, unseen data. The intuition here
is that while adding polynomial features enriches the model’s representational
power, it also increases the risk of fitting noise; therefore, careful validation
and regularization are often exercised to maintain generalizability.

Figure 3.12 demonstrates how to augment the feature space using polyno-
mial features up to the second degree. It shows that the nonlinear trend in the
data has been successfully captured by the new quadratic model due to the
augmented features up to the second degree of polynomials. Here, a nonlinear
curve is fit using polynomials up to the second degree. The resulting cost is
significantly reduced to approximately 0.94, compared to the previous cost of
6.3 based on the original linear model up to the first degree, underscoring the
efficacy of polynomial feature engineering in enhancing the model’s predictive
performance by providing a better fit to the true underlying data structure.

108 Deep Learning Generalization

3.6.2 Linearity in the weights

It is important to note that the nonlinear transformation introduced by poly-
nomial feature engineering is applied solely to the input design matrix Φ(X)
and not to the weight vector w. As a result, the model still remains linear in
its weights:

ŷ = Φ(X)w

This formulation implies that although the relationship between the input
features and the target variable may be rendered nonlinear through the fea-
ture transformation, the model is still considered as linear because it depends
linearly on the parameters w. This inherent linearity not only preserves the
interpretability of the model but also facilitates a clear and straightforward
analysis of how each parameter contributes to the final predictions, allow-
ing for both efficient optimization and transparent inference of the model’s
behavior.

In contrast, nonlinear models such as neural networks introduce nonlin-
ear transformations that extend to the weights themselves, thereby making
the model nonlinear with respect to its parameters and consequently more
complex to interpret. Although these models possess the capability to capture
intricate and highly nonlinear patterns within the data, they often sacrifice
the direct explainability characteristic of linear models. This complexity can
complicate the process of understanding the precise influence of individual
weights, thus making it more difficult to analyze how specific parameters drive
the predictions.

3.7 More on the Model

We have been using fw to represent the model f developed based on a set
of weights w, but for a broader discussion, we will denote the model simply
as f . It is worth noting that model choice can vary along several dimensions,
such as linearity, where models may be linear or nonlinear, and the nature
of parameterization, with parametric models having a fixed number of pa-
rameters and nonparametric models allowing the number of parameters to
increase with the amount of data available. For example, in linear regression,
the model f is inherently linear and parameterized by w, a formulation that
not only clarifies its structure but also aids in understanding the underlying
assumptions.

Model training involves building a model that represents the true map-
ping relationship between the input variable x and the output variable y. Let
us denote the underlying real mapping function as g, which is nonrandom,
consistent, and encapsulates the true relationship between x and y. Our ob-
jective is to estimate this function g as accurately as possible using our model

Classical Perspectives on Generalization 109

f , thereby ensuring that the predictions produced by f closely reflect the true
dynamics inherent in the data-generating process.

Assuming an additive random noise ǫ in the data-generating process, we
can express the underlying relationship as

y = g(x) + ǫ.

In this expression, ǫ is an additive noise term that is assumed to follow a
normal distribution with zero mean and fixed variance σ2, that is,

ǫ ∼ N (0, σ2).

This random variable ǫ accounts for errors arising from measurement inaccu-
racies or other real-world sources of noise and is assumed to be independent
of the input variable x in the regression setting. Therefore, the goal of linear
regression is to construct a linear model f that approximates the true function
g as closely as possible, even in the presence of this additive, independent, and
random noise.

Given the limited representativeness of the available dataset (X,y) for
capturing all possible variations from the distribution P (x, y), we often aim
to build a model f whose expected output matches that of g. Mathematically,
we choose a model f such that

E[f(X)] ≈ E[y | x = X] = E[g(x) + ǫ | x = X] = E[g(X)] + E[ǫ] = g(X).

This equation ensures that, on average, our model f aligns with the true map-
ping function g, thereby confirming that the model is capable of generalizing
appropriately despite the inherent limitations of any finite dataset.

3.7.1 Bias and variance decomposition

As introduced in Chapter 1, when training a model f , there are three primary
sources of error to balance: bias, variance, and the irreducible error due to in-
herent noise in the data. Bias refers to the error due to the model’s insufficient
capacity to perfectly fit the true function g, and it represents the underfitting
scenario. For instance, when a model is too simplistic relative to the under-
lying complexity of g, such as fitting a nonlinear quadratic pattern using a
linear model f , the result is high bias. In contrast, variance refers to the error
arising from the model capturing spurious relationships that are corrupted by
the random noise ǫ present in the data, thereby representing the overfitting
scenario. For example, even when fitting a linear pattern g with a linear model
f , if the model fails to capture the true underlying structure (i.e., E[f] 6= g),
it can exhibit high variance by overly adapting to the noise in the training
data.

Following the discussion on the estimation risk in Chapter 2, we can decom-
pose the expected risk for a new, unseen input Xnew. For notational simplic-
ity, we denote f(Xnew) = f and g(Xnew) = g. Through careful mathematical

110 Deep Learning Generalization

FIGURE 3.13
Decomposing the risk into the irreducible part, that is, the variance of the
error term, and the reducible part, that is, the squared bias and variance of
the model.

derivation, the expected squared error can be decomposed into three distinct
components: the squared bias, (Bias[f])2; the variance of the model, Var[f];
and the variance of the noise, σ2 (which represents the irreducible error). This
decomposition can be summarized by the following:

E[(y − f)2] = (Bias[f])2 +Var[f] + σ2,

which not only clarifies the individual contributions of each error source but
also highlights the inherent limitations in reducing the overall error.

Figure 3.13 illustrates this decomposition process, highlighting the alge-
braic trick of introducing an additional term—by adding and subtracting the
same quantity—when expanding the squared error expression. This technique
simplifies the derivation and makes the underlying structure of the decompo-
sition clearer.

This process effectively separates the risk into two distinct components:
the irreducible part, represented by the variance of the error term, and the
reducible part, which comprises both the squared bias and the variance of the
model. This clear separation aids in understanding which aspects of the error
can be mitigated through improved modeling techniques.

The above derivation also uses the facts that E[g] = g (since g is determin-
istic and nonrandom) and E[ǫ] = 0, where y is the observed target for Xnew.
Additionally, it follows that

E[fy] = E[f]E[y] = E[f]E[g + ǫ] = E[f](E[g] + E[ǫ]) = gE[f].

These simplifications rely on the fundamental properties of expectation for

Classical Perspectives on Generalization 111

deterministic functions and independent random noise, ensuring that the ex-
pected value of the true function remains unchanged and that the noise term
does not bias the mean error.

Minimizing the risk involves reducing one or more of these three sources
of error. The random noise term, quantified by σ2, is an irreducible source of
error that cannot be controlled, while both bias and variance are reducible
elements that can be managed and optimized through the training procedure.
In practice, efforts to minimize overall risk focus on decreasing the squared bias
and the model’s variance, acknowledging that the noise component remains
an inherent aspect of the data-generating process.

As discussed earlier, a simple model tends to incur a high bias and low
variance, leading to underfitting, whereas a complex model typically exhibits
low bias and high variance, resulting in overfitting. This observation aligns
with the classical statistical view on the bias-variance tradeoff, where reduc-
ing one often leads to an increase in the other. The interplay between bias and
variance imposes a fundamental limitation on a model’s capability to gener-
alize to future test data, as it is challenging to simultaneously minimize both
sources of error. Together, these three sources of error establish a lower bound
on the expected error for any future unseen dataset.

However, as will be explored in later chapters, over-parameterized models
such as smoothing splines and neural networks can continue lowering the vari-
ance even when the bias has already been reduced to zero by exploring a bet-
ter generalizing solution in the parameter space. This phenomenon, known as
double-descent, challenges traditional conceptions of the bias-variance trade-
off and provides new insights into the behavior of complex models in high-
dimensional settings.

3.7.2 Understanding bias and variance using bootstrap

Recall that the model bias refers to the gap between the expected model
prediction E[f] and the underlying true target g:

Bias[f] = g − E[f]

The expectation E[f] considers all different realizations of the dataset (X,y)
sampled from the same joint data-generating distribution P (x, y), effectively
averaging the model’s behavior over multiple training scenarios. A biased
model is said to underfit the training data, as it fails to capture the true
relationship between the input features and the output label, resulting in pre-
dictions that consistently deviate from the true target. A less biased model
can better capture the regularities in the data and represent the underlying
complexity more effectively, leading to improved accuracy and more reliable
inference.

In the previous decomposition formula, the squared bias term can be inter-
preted as the error introduced by a simplifying assumption in the model, such
as approximating an inherently nonlinear pattern g using an under-capacitated

112 Deep Learning Generalization

linear model f . This assumption leads to an insufficient representation of the
true pattern in the data, which in turn contributes to systematic prediction
errors. Increasing the model complexity by using feature augmentation or
incorporating additional useful parameters is likely to enhance the model’s
fitting capacity and thus reduce its bias by providing a better approximation
of g. However, this increase in complexity may also risk overfitting the data if
the model begins to capture noise as if it were a signal.

The variance measures the expected movement of f around its mean:

Var[f] = E[(f − E[f])2]

This quantity refers to the model’s sensitivity to possible changes in the data
and reflects how much the prediction f can fluctuate when different training
samples are used. As a result of overfitting the random noise, a model with
high variance becomes overly complex and sensitive to even small fluctuations
in the data. Note that the level of complexity for a high-variance model f
is defined in terms of the current dataset and may not accurately represent
the true complexity of the underlying function g, which remains unknown in
practice.

Since both bias and variance are highly dependent on the available dataset
(X,y), one effective method to quantify a model’s bias and variance across dif-
ferent datasets is the bootstrap procedure used to simulate additional artificial
datasets. Bootstrap is a technique to generate artificial datasets by randomly
sampling with replacement from the original dataset (X,y), thereby creat-
ing multiple pseudo-replicates that reflect the variability inherent in the data.
These artificial datasets serve as additional realizations from P (x, y) and can
be used to perform the same model-fitting procedure multiple times. The re-
sulting multiple fits can then be used to estimate the bias and variance of the
original model f , providing valuable insight into its stability and generaliza-
tion performance.

Figure 3.14 provides a visual illustration of the estimated bias and vari-
ance using bootstrap. The leftmost plot shows the underlying function and
actual observations disrupted by random noise, offering a clear view of the
true data-generating process. The middle plot displays the bias by highlight-
ing the difference between the fitted model and the true function, while the
rightmost plot presents the multiple fits based on bootstrapped samples as
dashed lines, with the original fitted model shown as a solid line. The spread
among these dashed lines visually demonstrates how sensitive the model is to
the bootstrapped training data and showcases the variability of the model.

Visualizing the three components of the model’s risk after introduc-
ing bootstrap offers a concrete way to understand how bias, variance, and
noise contribute to the overall error. The bootstrap procedure is a powerful
technique for generating artificial datasets and is also connected to the concept
of assembling, where multiple fits are performed and aggregated to produce
the final prediction. The additional fits can stem from new datasets or even
different model architectures, each contributing a regularizing effect either via

Classical Perspectives on Generalization 113

FIGURE 3.14
Visualizing the three components of the model’s risk after introducing boot-
strap.

the data or the model itself and ultimately leading to more robust predictive
performance.

3.7.3 Reduced generalization with high model complexity

The classical view on generalization posits that the two reducible sources of
error, namely bias and variance, cannot be reduced simultaneously. When the
bias is high and the variance is low, the model is relatively simple and tends to
underfit the training data, a situation that often arises at the initial stage of
training. In this scenario, a common strategy for empirical risk minimization
is to train a more complex model. Increasing the model complexity typically
leads to a relatively large decrease in bias while incurring only a slight in-
crease in variance, thereby reducing the overall combined error. Although this
increased variance implies that the model’s predictions may become more
sensitive to fluctuations in the training data, potentially resulting in outputs
that deviate from the true target when new data are encountered, the gen-
eral benefit of reducing bias by increasing model complexity often outweighs
the downside of a somewhat less stable estimate when the goal is to build a
generalizable model.

The classical view also indicates that a high-variance model is less likely
to generalize well to future test sets. When a model becomes arbitrarily com-
plex, it tends to overfit the training data and may even perfectly interpolate
it, resulting in zero training error. However, such a model often suffers from
high variance because it fits not only the underlying signal but also the noise
present in the training data. Consequently, when using the model to score
new data points, even a slight change in these points can lead to very dif-
ferent outputs, making the predictions both sensitive and unstable. In con-
trast, a well-balanced model achieves an appropriate tradeoff between bias and

114 Deep Learning Generalization

variance, thereby avoiding the pitfalls of underfitting and overfitting. This del-
icate balance, often described as the “sweet spot” in Chapter 1, underscores
the importance of carefully tuning model complexity to achieve robust gener-
alization performance.

3.7.4 Observing increased variance by varying model
complexity

To observe the increased variance as the model becomes complex, we em-
ploy additional feature engineering by increasing the number of polyno-
mial basis functions to a higher degree. Instead of running the same codes
multiple times, each with a different polynomial degree, it is more effi-
cient to encapsulate the polynomial transformation into a general function.
Designing a reusable function enhances flexibility in specifying the degree of
the polynomial transformation and streamlines the experimentation process.
The following function achieves this by creating a matrix as a placeholder
based on the predefined degree of the polynomial, followed by filling in the
matrix using the appropriate polynomial functions.

1 def polynomial (x, num_basis =2) :

2 # Create the matrix of zeros as a placeholder

3 Phi = np.zeros ((x.shape [0], num_basis))

4 # Fill in each column based on the sequence of polynomials

5 for i in range (num_basis):

6 Phi [:, i:i+1] = x**i

7 return Phi

Listing 3.12
Creating Polynomial Features.

We can then create a new design matrix using this utility function by pass-
ing in the original design matrix and specifying the number of basis functions
required. Figure 3.15 shows the fitted model using three different numbers
of basis functions along with the respective cost associated with each config-
uration. This figure clearly illustrates that the model becomes increasingly
unstable as the number of basis functions grows, indicating a rise in variance.
Specifically, the left plot shows a better fit compared to the model using up
to the second-degree polynomial. When the degree of the polynomial grows to
10 or even 15, the model perfectly fits all the data points, effectively captur-
ing every nuance of the training set. However, this comes at the cost of high
variance, especially in the middle and right regions of the plot, where the pre-
dictions become highly erratic due to the model overfitting to the noise. For
further details and the full training codes, please refer to the accompanying
notebook.

The figure above also illustrates that the fitted model is less general-
izable to the test set when high variance is present as a result of exces-
sive model complexity. The bias-variance tradeoff is thus central to classical
generalization theory: the fitted model needs to find the “sweet spot” and

Classical Perspectives on Generalization 115

FIGURE 3.15
Fitting three models using different numbers of polynomial basis functions.

properly balance underfitting and overfitting. A good model should be expres-
sive enough to represent the underlying pattern in the data while remaining
simple enough to avoid fitting potentially spurious patterns caused by random
noise, ensuring that it performs robustly on new, unseen data.

3.8 Summary

In this chapter, we went through an exploration of classical generalization
from the perspective of linear regression, laying the groundwork for under-
standing more complex modeling paradigms later on. We began by reviewing
the essential elements of supervised learning, where the primary objective is to
learn a mapping function f : Rd → R that approximates the true underlying
function g in the presence of additive noise. The discussion detailed how the
inductive bias inherent in models such as linear regression—where the map-
ping is assumed to be linear—shapes both the formulation and the subsequent
learning process.

The training pipeline was decomposed into four fundamental components:
data, model, cost function, and optimization. We examined the structure of
the dataset, emphasizing that data are typically assumed to be i.i.d. sam-
ples drawn from an unknown distribution P(x, y). The train-test split was
discussed as a critical step to mitigate overfitting and ensure that the model
performance is evaluated in a manner representative of its generalization ca-
pability.

For the working mechanism of linear regression, we described the model as
a linear mapping ŷ = Φw where the design matrix Φ may be augmented via
the bias trick to incorporate an intercept or feature engineering, and the weight

116 Deep Learning Generalization

vector w encapsulates the model parameters. The cost function, taking the
form of SSE or MSE, was shown to possess a quadratic structure that permits

a closed-form solution via the Normal Equation w∗ =
(

Φ⊤Φ
)−1

Φ⊤y. This

convexity guarantees the uniqueness of the global minimum, a key advantage
in the linear regression context.

We then explored iterative optimization methods, primarily focusing on
gradient descent and its variants (mini-batch and SGD). The gradient descent
algorithm was analyzed both conceptually and through detailed derivation,
highlighting the importance of the learning rate η in balancing convergence
speed against the risk of overshooting the minimum. We used contour plots
and parameter trajectories to illustrate how the algorithm navigates the cost
landscape.

Recognizing that predictive performance hinges on the model’s ability
to capture the underlying data structure without overfitting, we introduced
strategies for enhancing model capacity via polynomial feature engineering.
By augmenting the original feature space with polynomial terms, the linear
model can represent nonlinear relationships while retaining linearity in the
weights. This transformation increases the expressiveness of the model and
reduces bias; however, it also introduces the risk of high variance if not care-
fully regularized.

The classical bias-variance tradeoff was then revisited. We decomposed the
expected prediction error as

E[(y − f)2] = (Bias[f])2 +Var[f] + σ2,

and discussed how underfitting (high bias) and overfitting (high variance) rep-
resent two sides of the same coin. Techniques such as bootstrap were presented
as practical tools to empirically assess and visualize bias and variance, thus
providing guidance for model selection and complexity control.

Finally, we emphasized that the goal of model training is to approximate
the true function g while balancing the competing demands of bias reduction
and variance control. Achieving this balance is central to the generalization
of machine-learning models, ensuring that they perform robustly on unseen
data.

In summary, this chapter provided a theoretical and practical foundation
for classical generalization. It connected the fundamental principles of super-
vised learning, linear modeling, and optimization to the broader challenge
of balancing model complexity, a balance that lies at the heart of effective
predictive modeling.

4

Modern Perspectives on Generalization

One of the most important insights in previous chapters is the bias-variance
tradeoff, a fundamental concept in statistical learning theory that specifies the
intricate relationship between a model’s complexity and its ability to general-
ize to unseen data. In this chapter, to comprehensively grasp this tradeoff, we
will delve deeper into the underlying mathematics and explore how it connects
with contemporary observations in machine learning.

As explained in Chapter 3, the expected prediction error for a model can
be decomposed into three distinct components:

Error = Bias2 +Variance + Irreducible Error

This decomposition provides a framework for understanding the sources
of error in statistical models:

1. Bias (squared): The first component measures the error introduced by
approximating a real-world problem, which may be inherently complex, by a
simplified (and thus biased) model. It is defined as the squared difference be-
tween the expected prediction of the model and the true underlying function:

Bias2 =
(

E[f̂(x)] − f(x)
)2

Here, E[f̂(x)] represents the expected prediction of the model for a given
input x, while f(x) is the true underlying function, which is typically unknown.

2. Variance: This term quantifies the model’s sensitivity to fluctuations in
the training dataset. It represents the variability of the model prediction for
a given data point x across different possible training sets:

Variance = E

[(

f̂(x)− E[f̂(x)]
)2
]

This equation captures how much the model’s predictions would change if
it were trained on different subsets of the data. It is essentially the definition
of variance for f̂(x) as a random variable.

3. Irreducible Error: This is the noise inherent in the data, which cannot
be eliminated regardless of the model used. It represents the fundamental
uncertainty in the problem domain.

The bias-variance tradeoff posits that as model complexity increases, bias
tends to decrease while variance tends to increase. In contrast, reducing model

DOI: 10.1201/9781003511601-4 117

https://doi.org/10.1201/9781003511601-4

118 Deep Learning Generalization

complexity tends to increase bias and decrease variance. This relationship
creates a delicate balance in model selection and tuning when one seeks the
“sweet spot” of model complexity. The optimal model achieves an equilibrium
where the sum of bias squared and variance is minimized, thereby minimizing
the total prediction error. Understanding this tradeoff is crucial, as it guides
the process of model selection and helps in diagnosing issues of overfitting or
underfitting in predictive models.

Traditionally, the goal in model selection is to find a model that general-
izes well to unseen data. The classical view on generalization, as discussed in
Chapter 3, posits that a model with excessive complexity, one that has too
many parameters relative to the amount of training data, will incur high vari-
ance. This high variance is expected to lead to overfitting, where the model
over-tunes itself not only to the underlying true relationships but also to the
random noise in the training data. Consequently, while such a model may
perform exceptionally well on the training set, its performance is expected to
deteriorate significantly on new, unseen test data.

To further analyze this tradeoff, consider a model complexity parameter
d (such as the degree of a polynomial in a linear regression model). As d
increases, we typically observe:

Bias2 ↓ and Variance ↑

According to this classical understanding, the optimal complexity of model
d∗ is achieved at a “sweet spot” where the test error is minimized, comprising
both bias and variance is minimized. Graphically, this is often depicted as
the bottom of an inverted U-shaped risk curve. On this curve, the test error
initially decreases with increasing d, reaches a minimum at d∗, and then starts
to increase as d continues to grow beyond this optimal point.

However, an intriguing phenomenon in contemporary machine-learning
practice, particularly with over-parameterized models like deep neural net-
works, seems to challenge this classical view. These models often have more
parameters than training data points, which, according to traditional theory,
should lead to high variance and poor generalization. However, despite achiev-
ing zero training error, which indicates perfect fit or even apparent overfitting,
they frequently demonstrate good generalization to test data.

This scenario can be considered as an over-parameterized interpolating
model where the number of parameters p exceeds the number of data points
n:

p > n ⇒ Training Error = 0

Surprisingly, despite the zero training error, these models do not exhibit the
expected high variance on the test set. Instead, they often manage to cap-
ture the underlying data distribution effectively without succumbing to the
noise present in the training data. This phenomenon, sometimes referred to
as “benign overfitting,” has sparked significant interest and research in the
machine-learning community.

Modern Perspectives on Generalization 119

The apparent contradiction between classical statistical learning theory
and the empirical success of over-parameterized models in modern machine-
learning practice has led to new lines of research. Many are now investigating
the conditions under which over-parameterization can lead to good general-
ization and how factors such as model architecture, optimization algorithms,
and data properties contribute to this unexpected behavior. In this chapter,
we will attempt to provide more insight into this phenomenon.

4.1 A Modern View on Generalization

When training a machine-learning model, our primary objective is to iden-
tify the optimal model from a (possibly infinite) set of potential candidate
models. This optimal model is characterized by its ability to make the fewest
mistakes on a previously unseen test dataset, thus demonstrating superior
generalization capabilities.

Formally, we can express this objective as finding the optimal model f∗
w

from a set of candidate models Fw that minimizes the average loss on a train-
ing dataset (referred to as the empirical loss):

f∗
w = arg min

fw∈Fw

1

n

n∑

i=1

L
(
y(i), fw(x

(i))
)

In this equation, f∗
w represents the optimal model, and Fw is the set of

all candidate models parameterized by w, L
(
y(i), fw(x

(i))
)
is the loss function

that quantifies the discrepancy between the true label y(i) and the model’s
prediction fw(x

(i)), and n is the number of samples in the dataset. The chal-
lenge lies in finding a model that strikes the right balance between learning
from the training data and maintaining the ability to generalize to new, un-
seen data. This balance is crucial in avoiding two common pitfalls: overfitting,
where the model becomes too specific to the training data, capturing noise
and idiosyncrasies that don’t generalize well; underfitting, where the model is
too simplistic and fails to capture important patterns in the data.

The goal is thus to develop a model that not only performs well on the
training data but also maintains its performance when dealing with new, un-
seen examples. This ability to generalize is the hallmark of a truly effective
generalizable machine-learning model, allowing it to make accurate predictions
or decisions in real-world scenarios beyond its training environment.

The classical view on generalization in machine learning is characterized by
a distinctive U-shaped curve that illustrates the bias-variance tradeoff. This
curve typically represents the model’s performance on the test set, measured
as the empirical test risk, and plotted as a function of model complexity. To
provide a comprehensive understanding, the training set’s performance curve

120 Deep Learning Generalization

FIGURE 4.1
The typical U-shaped training and test risk curves that indicate the classical
view on the bias-variance tradeoff.

is often plotted alongside it, demonstrating the model’s increasing predictive
power on the training data.

The U-shaped curve, as illustrated in Figure 4.1, reveals several key in-
sights. Starting with the initial decrease, as the model complexity increases
from a very simple state, both training and test risks decrease. This indi-
cates that the model is capturing more of the underlying patterns in the data.
Coming to the divergence point, at a certain level of complexity, the training
risk continues to decrease, but the test risk begins to increase. This diver-
gence marks the onset of overfitting. As the model becomes overly complex, it
overfits the training, data and the divergence continues. Consequently, while
the training risk continues to decrease, potentially reaching zero, the test risk
rises, indicating poor generalization.

According to this classical perspective, the optimal model is found at the
“sweet spot,” which is the point of minimum empirical test risk. This point
represents the ideal balance between underfitting and overfitting. Specifically,
the left of the sweet spot represents an underfitting regime where the model
is too simplistic and fails to capture the true relationships in the data. In
this case, the (squared) bias term dominates the test risk, indicating that the
model’s predictions are consistently off-target. The right side of the sweet spot
represents an overfitting regime where the model has become overly complex,
fitting noise in the training data rather than the underlying pattern. Here, the

Modern Perspectives on Generalization 121

variance term dominates the test risk, resulting in unstable predictions that
don’t generalize well to new data.

This classical view provides a framework for model selection and complex-
ity tuning. It suggests that the goal in model development should be to find
the right level of complexity that minimizes test risk (often approximated via
an additional validation set), thereby achieving the best balance between bias
and variance. However, it is important to note that recent developments in
deep learning have challenged some aspects of this classical view, particularly
in cases of highly overparameterized models. These developments have led to
ongoing research and debates about the nature of generalization in modern
machine-learning systems.

Holding the classical view on model complexity and generalization, we have
seen different mechanisms to control model performance through regulariza-
tion, including data manipulation, model architecture design, cost function
selection, and optimization algorithm choice. According to this perspective,
when model complexity is carefully balanced to avoid both underfitting and
overfitting, the model is expected to generalize well to unseen data drawn
from the same population as the training set. This understanding has led to
the widespread use of the U-shaped risk curve as a guide for model selection.

While classical statistics suggest that larger, more complex models would
suffer in predictive performance once they overfit the training data, recent
observations in machine learning have challenged this view. Practitioners often
find that certain ML models continue to achieve lower test errors even as
they become increasingly complex, far beyond the point where classical theory
would predict overfitting. This apparent contradiction has led researchers to
propose the concept of the “double descent” risk curve, which extends and
refines our understanding of the bias-variance tradeoff.

The double-descent curve describes a two-phase reduction in test risk
as model complexity increases. The first descent (living in the under-
parameterized regime with d < d∗) is the low complexity regime where models
are underfitted, exhibiting high bias and low variance. As model complexity
increases (d goes up), the bias decreases while variance increases, leading to a
decrease in test error until the classical sweet spot d∗ is reached. This sweet
spot is located at the interpolation threshold (d = d∗), a critical point where
the model has just enough complexity to fit the training data perfectly. At
this point, the model is on the brink of overfitting.

The second descent (living in the over-parameterized regime with d > d∗)
is the high complexity regime where models become over-parameterized, with
more effective number of parameters than data points. Surprisingly, as model
complexity continues to increase, test error decreases again. Now, the model
begins to generalize better despite being able to fit the training data perfectly.

As illustrated in Figure 4.2, the relationship between model complexity
and performance can exhibit an interesting pattern. When the effective model
complexity is below the interpolation threshold, we observe the classical bias-
variance tradeoff in action. This is characterized by an increasing test risk as

122 Deep Learning Generalization

FIGURE 4.2
The “double-descent” curve that unifies the classical and modern views on
generalization.

the model’s representational capacity grows, reflecting the traditional under-
standing that overly complex models may overfit the training data. However,
a remarkable shift occurs after passing the interpolation threshold: the test
risk begins to decrease again. Throughout this entire process, the training
risk consistently drops as the model complexity increases, eventually reaching
and maintaining zero after surpassing the interpolation threshold. This be-
havior challenges our conventional understanding of model performance and
generalization.

The “double-descent” curve in Figure 4.2 presents a unified perspective
that bridges the gap between classical statistical learning theory and modern
empirical observations in machine learning. This phenomenon has been ob-
served across a diverse range of machine-learning models, from the polynomial
regression discussed in the previous chapter to sophisticated deep learning ar-
chitectures such as convolutional neural networks. In the under-parameterized
region, as model complexity increases, we witness the first descent in test risk.
This initial behavior aligns with the classical U-shaped curve that encapsu-
lates the bias-variance tradeoff, where increasing complexity reduces bias but
simultaneously raises variance. The model then reaches a critical point when

Modern Perspectives on Generalization 123

its complexity becomes sufficient to interpolate the training data perfectly,
marking the transition into the over-parameterized region.

Interestingly, it is in this over-parameterized regime that we observe be-
havior that defies traditional statistical intuition. As the model complexity
continues to increase beyond the interpolation threshold, we see a second de-
scent in test risk. This unexpected improvement in generalization performance
challenges long-held beliefs about the relationship between model complexity
and overfitting. It suggests that in certain scenarios, particularly with modern
machine-learning models, increasing the model’s capacity beyond the point of
perfect training set fit can still lead to better generalization on unseen data.
This phenomenon has sparked significant interest in the machine-learning
community, prompting researchers to reevaluate our understanding of gen-
eralization and to develop new theoretical frameworks that can account for
this behavior in over-parameterized models.

The “double-descent” phenomenon, despite its widespread occurrence, re-
mains a largely unexplored and intriguing area of research in machine learning.
The underlying mechanisms driving this observed behavior are not yet fully
understood, presenting an exciting frontier for investigation. In the modern
over-parameterized regime, we often encounter counterintuitive behaviors that
challenge our traditional understanding of model performance. For example,
deep neural networks frequently exhibit the “double-descent” phenomenon
even in the absence of explicit regularization techniques, which turns out to
be related to the way it is trained using the stochastic gradient descent (SGD)
algorithm. Interestingly, when proper regularization methods such as L1 or L2
penalties are applied, the second descent may not necessarily manifest, sug-
gesting that these regularization techniques can effectively mitigate overfitting
even in highly complex models.

Furthermore, the modern interpolation regime presents another paradox:
increasing the size of the training dataset can sometimes lead to a degradation
in test performance. This observation stands in contrast to the conventional
view that more data can invariably improve model learning. These interesting
phenomena delineate the boundaries of classical statistical learning theory and
underscore the need for deeper research into the statistical and computational
principles governing modern machine-learning and deep learning models.

To further analyze the risk curve and gain a deeper understanding of its
implications, we can consider each point on the curve as representing a fully
trained model obtained through a specific training algorithm, such as SGD.
When we examine a fixed level of model complexity, represented by a vertical
slice in Figure 4.2, the training risk reflects the performance of the best-trained
model on the training set for that particular complexity level. Similarly, the
test risk denotes the performance of this best-trained model when applied to
the test set. It is important to note that for any given level of complexity,
multiple potential models can exist resulting from different initializations or
optimization paths. The risk curve we observe thus summarizes the perfor-
mance of the best-trained model at each level of complexity.

124 Deep Learning Generalization

4.1.1 Beyond perfect interpolation

Complex models, such as neural networks and other nonlinear classes of mod-
els, can often exhibit remarkably low, or even zero, training error once sur-
passing the critical interpolating threshold. This phenomenon occurs when the
model becomes sufficiently complex to interpolate the training data perfectly,
as illustrated by the rightmost point in Figure 4.1. Such a situation can arise
when the number of model parameters or weights, denoted as p, matches or ex-
ceeds the number of observations n in the training dataset. A classic example
of this can be found in linear regression. When p = n, the problem essentially
reduces to solve a system of n linear equations with n free variables. Under
the condition of nonsingular matrix properties, this system has a unique so-
lution that yields an exact fit to the training data. This scenario represents
the point at which the model transitions from being under-parameterized to
over-parameterized, marking a critical juncture in the model’s capacity to fit
the data.

To better illustrate this concept, let’s consider a simple two-dimensional
training set comprising two observation points, {x(1), y(1)} and {x(2), y(2)}, on
a coordinate system. If we start with a model that has only one parameter,
such as a horizontal line represented by f(x) = c, we find that this univari-
ate model is too simplistic to fit both points simultaneously. An exception
occurs only if the two observations, y(1) and y(2), happen to have identi-
cal values. In this scenario, the system of equations is overdetermined and
under-parameterized, with more constraints (equations) than free variables
(parameters). Consequently, a solution may not exist if the points do not
align horizontally, highlighting the limitations of an overly simplistic model.

The situation changes dramatically when we introduce two parameters, as
in a simple linear regression model f(x) = w1x + w0. This enhanced model
renders the problem solvable with an exact solution. The two parameters,
w1 (slope) and w0 (intercept), correspond to the two free variables in the
system. We now have a system consisting of two equations, derived from the
two observations {x(1), y(1)} and {x(2), y(2)}. Solving this system determines a
unique line that passes through both points of the coordinate system, resulting
in zero training error. This case exemplifies an exactly determined system,
where the number of constraints equals the number of parameters, allowing
the model to interpolate the data perfectly and generate zero training error.
It represents the precise point at which the model has just enough complexity
to fit the training data without any excess capacity.

Now, extending the model further to include more than two parameters,
such as in a polynomial model f(x) = w2x

2+w1x+w0, transforms the problem
into an underdetermined and over-parameterized system. With three param-
eters and only two observations, the system no longer has a unique solution
but instead admits infinitely many solutions. These solutions correspond to
various curves that pass through both points, each characterized by different
combinations of the weights w2, w1, and w0. Such a model can interpolate

Modern Perspectives on Generalization 125

FIGURE 4.3
Fitting two two-dimensional observations using different model complexities.

the two points perfectly, maintaining zero training error, but the additional
degrees of freedom allow the curve to become arbitrarily wiggly or complex,
depending on the number of parameters involved. This scenario illustrates
the potential for overfitting in over-parameterized models, where the model
has the capacity to fit not only the underlying pattern but also any noise or
idiosyncrasies in the training data. Understanding these dynamics is crucial
for navigating the trade-offs between model complexity, fitting capacity, and
generalization performance in many training scenarios.

This relationship between model complexity and training error can be sum-
marized in Figure 4.3, which provides a visual representation of the transition
between under-parameterized, exactly parameterized, and over-parameterized
regimes. This figure offers insights into how the model’s capacity to fit data
evolves as its complexity increases.

In the left plot, we observe a 0th-degree polynomial model, which contains
only one parameter. This simplistic model is represented by a horizontal line,
illustrating the limitations of an under-parameterized system. With just one
degree of freedom, the model struggles to capture the underlying pattern in
the data, often resulting in a high training error. This scenario exemplifies the
challenges faced when a model lacks sufficient complexity to learn the true
relationship in the data.

The middle plot depicts a critical juncture where the number of model
parameters exactly matches the number of observations. In this exactly pa-
rameterized regime, the solution becomes unique and exact. The model has
just enough flexibility to fit all data points perfectly, resulting in zero training
error. This scenario represents the ideal balance between model complexity
and data fitting, where the model can capture the underlying pattern without
introducing additional unnecessary complexity.

The right plot illustrates the over-parameterized regime, where the model
contains more parameters than there are observations. In this scenario, the
system becomes underdetermined, leading to non-unique solutions. The model

126 Deep Learning Generalization

now has the capacity to fit the data in infinitely many ways, often resulting in
overly complex solutions. While these models can achieve zero training error,
they may introduce unnecessary wiggles or complexity that doesn’t reflect the
true underlying relationship in the data (perturbed by potential noise).

Overall, as we move from left to right across Figure 4.3, we witness the
model’s evolution in its ability to fit the data. This progression highlights
the transition from failing to fit the data properly (under-parameterized) to
perfectly fitting the data (exactly parameterized) and finally to admitting
an infinite number of overly complex solutions (over-parameterized). Under-
standing this relationship is crucial for model selection and interpretation, as
it helps us navigate the trade-offs between model simplicity, data fitting, and
generalization performance in various machine-learning applications.

4.1.2 Behind the double-descent phenomenon

Now let us go back to the conflict between theory and practice: despite the
conventional view that excessive model complexity and near-perfect fit to
training data lead to poor generalization, empirical observations have shown
that increasing model complexity beyond the interpolation threshold can ac-
tually result in low error rates on test sets. This counterintuitive phenomenon
has significantly influenced the training of deep neural networks in prac-
tice. A direct result is that practitioners often prefer sufficiently large neural
networks to start with, as these models can easily interpolate the training
dataset while still achieving good generalization on unseen test data if prop-
erly trained. What’s even more remarkable is that this preference for large and
complex architectures persists even when the training data contains high lev-
els of noise, challenging our traditional understanding of overfitting and model
selection.

The concept of the “double-descent” risk curve is a way to reconcile the
observed phenomenon of over-parameterization with classical learning the-
ory. Specifically, this new perspective extends the traditional U-shaped risk
curve associated with the bias-variance tradeoff, incorporating what is now
termed the modern interpolation regime. The double-descent framework in-
troduces a critical point called the interpolation threshold, defined as the
point at which the model achieves zero training error. For model capacities
below this threshold, the test risk follows the classical U-shaped trajectory,
reflecting the familiar balance between underfitting and overfitting. However,
as the model capacity surpasses the interpolation threshold, we enter the over-
parameterized regime where, contrary to classical expectations, the test risk
begins to decrease again. This second descent in test risk characterizes the
modern interpolation zone, challenging our traditional understanding of model
complexity and generalization.

For now, let us use the number of parameters in the model as a proxy
for its representational capacity, or complexity. A more complex model typ-
ically involves a greater number of parameters, allowing for more intricate

Modern Perspectives on Generalization 127

representations of the data. As the model gets bigger and incorporates more
parameters to the point that it surpasses the interpolation threshold, an in-
teresting phenomenon occurs: the test risk declines even below the minimum
risk observed at the “sweet spot” of the classical regime. This empirical result
raises a great question that has captivated researchers and practitioners: why
do larger, seemingly overfit models perform even better on unseen data, which
stands in sharp contrast to our classical intuitions about generalization?

One good explanation for this phenomenon draws upon the principle of
Occam’s razor, a concept introduced in Chapter 1. This principle posits that
among multiple models that fit the data equally well, we should prefer the
simplest and smoothest model. In the context of machine learning, a common
measure of smoothness is the norm of the model parameters. Models with
smaller norms for their weights are generally considered more regularized and
smoother, displaying an important inductive bias that encourages complex
models to align with simple underlying structures. When multiple models
achieve zero training error in the over-parameterized regime, the learning al-
gorithm typically selects the one with the smallest norm in its weights. This
selection process introduces a bias toward smooth solutions within the space
of candidate functions that perfectly fit the training data, potentially explain-
ing why over-parameterized models can still generalize well despite their high
complexity.

In addition to parameter norms, various other techniques also play crucial
roles in controlling the smoothness of a model. One notable example is SGD,
which acts as an implicit regularizer by favoring smooth and low-variance
models among those that perfectly interpolate the training data. This implicit
regularization effect of SGD is particularly significant in the context of deep
learning, where it contributes to the surprising generalization performance of
neural networks despite their excessive capacity. Another important technique
is bagging, or bootstrap aggregation, which can influence the smoothness of
the fitted model by aggregating multiple model instances.

When faced with several models that yield zero training error, SGD demon-
strates a tendency to prefer those with lower variance, which is often asso-
ciated with smaller parameter norms. This preference becomes particularly
important in the over-parameterized regime, where the function class is ex-
pansive. In this context, the bias toward smaller norms leads to the selec-
tion of “simpler” models that exhibit reduced variance in their predictions.
The implicit regularization effect of SGD thus plays a crucial role in the
generalization capabilities of deep neural networks, despite their seemingly
excessive capacity. This phenomenon remains an active and exciting area
of research, with ongoing investigations seeking to unravel the complex in-
terplay between optimization algorithms and implicit regularization in deep
learning.

Let us recall the definition of a norm, which provides a way to quantify the
magnitude of a weight vector w. One commonly used metric is the ℓp norm,

128 Deep Learning Generalization

defined for a weight vector w⊤ = [w1, w2, . . . , wD] as

ℓp =

(
D∑

i=1

|wi|p
)1/p

.

This general form gives rise to specific norms for different values of p. For in-
stance, when p = 1, we obtain widely used ℓ1 norm: ℓ1 = |w1|+|w2|+· · ·+|wD|,
which serves as the regularization penalty in Lasso regression. When p = 2,
we get the ℓ2 norm: ℓ2 =

√

w2
1 + w2

2 + · · ·+ w2
D, used as the regularization

penalty in Ridge regression. Each of these norms imposes distinct regulariza-
tion effects on a model, shaping its behavior and generalization properties in
unique ways. The specific details and implications of these different norms will
be explored more thoroughly in a later chapter dedicated to regularization via
model cost.

It’s crucial to understand that a regularized model doesn’t necessarily
need to achieve zero training error to generalize effectively to test data. In
the realm of classical statistics, when a model exhibits signs of overfitting, the
conventional recommendation is to employ regularization techniques. These
techniques aim to reduce the model’s capacity, guiding it toward the “sweet
spot” on the classical U-shaped test risk curve. However, modern deep learning
often adopts a seemingly counterintuitive approach: instead of reducing ca-
pacity, practitioners often increase model capacity by adding parameters. This
strategy aims to escape the overfitting region by moving beyond the critical
regime into the over-parameterized regime, which can offer an even lower test
risk. This paradigm shift in approach highlights the evolving understanding
of model complexity and generalization in the era of deep learning.

4.1.3 Extending the double-descent phenomenon via the
scaling law

The double-descent risk curve has extended our notion of the bias-variance
tradeoff. Historically, model complexity was primarily characterized by the size
of the model, defined as the number of parameters used. However, subsequent
research has revealed that the double-descent phenomenon also manifests as a
function of training iterations in deep neural networks. Specifically, for a fixed
model architecture, training with SGD demonstrates a double-descent pattern
in test risk as the parameters gradually converge over training iterations. This
observation has expanded our understanding of model behavior beyond simple
parameter counts.

To unify these multiple perspectives on the double-descent phenomenon,
we can use the concept of Effective Model Complexity (EMC) proposed by
[14]. The EMC of a training procedure is defined as the maximum number
of samples on which the procedure can achieve near-zero training error on
average. For deep neural networks, a training procedure specifies both the

Modern Perspectives on Generalization 129

model’s size (or complexity) and the number of epochs.1 This framework al-
lows for a more nuanced understanding of model behavior, taking into account
both structural and temporal aspects of training. Two types of double-descent
curves have been empirically observed in the paper based on the training pro-
cedure: complexity-wise double descent, which arises when test risk exhibits
a double-descent behavior as model complexity increases (i.e., as the number
of parameters grows), and epoch-wise double descent, where for a fixed model
complexity, test risk initially increases due to overfitting as training iterations
proceed but subsequently decreases with further training epochs.

The relationship between EMC and the size of the training set provides
a framework to categorize these double-descent curves into three distinct
regimes, each with its own characteristics and implications for model per-
formance. In the under-parameterized regime, when the EMC is significantly
smaller than the size of the training set, the model underfits the data. Each
feature captures only limited information about the underlying patterns, and
increasing model complexity or training epochs reduces both the training
and test risks. However, optimization in this regime is challenging due to
the presence of numerous local minima, making convergence more difficult.
This regime corresponds to models with insufficient capacity to represent the
data effectively, often resulting in poor performance on both training and test
sets.

When the EMC is significantly larger than the size of the training set,
the model enters the over-parameterized regime. In this state, the model in-
terpolates the training data, achieving near-zero training error. Interestingly,
increasing model size or training epochs can continue to reduce test risk in this
regime, contrary to classical expectations of overfitting. Optimization becomes
relatively straightforward because there are many interpolating solutions, and
some of these local minima could be equally good solutions compared with the
optimal global minimum. This scenario is analogous to an underdetermined
system of equations, where the number of unknowns exceeds the number of
equations. The ease of optimization and the potential for continued improve-
ment in test performance make this regime particularly interesting for deep
learning practitioners, which essentially ushers in the new world of scaling law.

The critical regime occurs when the EMC is comparable to the size of the
training set, placing the model in a critical state. This regime is character-
ized by its unpredictability: modifying the training procedure may either in-
crease or decrease the test risk. The model’s fit for individual features becomes
less reliable, leading to more erratic behavior in generalization performance
compared to the under- and over-parameterized regimes. This critical regime
represents a transition point between underfitting and overfitting, where the
model’s behavior is most sensitive to small changes in parameters or training
procedures. Understanding and navigating this regime is crucial for fine-tuning
models and achieving better test performance.

1One epoch is a complete passé through the full training set.

130 Deep Learning Generalization

FIGURE 4.4
The zoning approach based on the generalized double-descent hypothesis.

This generalized double-descent hypothesis offers a formalization of the
observations made in machine-learning and deep learning models regarding
the relationship between model complexity and performance by zoning the
learning curves into three distinct regimes: under-parameterized, critically pa-
rameterized, and over-parameterized. As illustrated in Figure 4.4, this new
perspective provides a more nuanced understanding of how test risk evolves
across different levels of model complexity and training procedures.

In this zoning approach, both the left and right zones represent areas
where the test risk decreases as the training procedure is enhanced, such as by
enlarging the model size or training for more epochs. These zones correspond
to the under-parameterized and over-parameterized regimes, respectively. In
the under-parameterized regime, models have low EMC relative to the size
of the dataset, and increasing model complexity tends to reduce test risk.
Similarly, in the over-parameterized regime, there is a monotonic relationship
between EMC and test risk, with both improving as the training procedure is
enhanced.

The middle zone, representing the critically parameterized regime, exhibits
less predictable behavior. In this regime, changes to the training procedure
can either increase or decrease the test risk, making it a challenging area for
model optimization. This unpredictability stems from the model’s EMC being
comparable to the size of the training set, creating a delicate balance where
small changes can have significant and sometimes counterintuitive effects on
performance.

Modern Perspectives on Generalization 131

In the context of over-capacitated linear models, such as polynomial re-
gression with excessive polynomial degrees, explicitly penalizing the parameter
magnitudes introduces an inductive bias toward smoother functions, thereby
improving generalization. This approach aligns with traditional regularization
techniques used to combat overfitting. Similarly, in over-capacitated deep neu-
ral networks, the SGD algorithm plays a crucial role by implicitly regularizing
the training process. SGD tends to favor low-variance models, which enhances
generalization even in highly complex networks. This implicit regularization
effect of SGD contributes to the surprising generalization capabilities of deep
neural networks, despite their often vast parameter spaces.

To further explore and validate these concepts, we will examine the
double-descent phenomenon in interpolating polynomial regression models
with smoothness constraints in a later section. This analysis will provide em-
pirical evidence demonstrating how the test risk evolves as the model becomes
increasingly complex.

4.1.4 A brief history of the double-descent phenomenon

The double-descent phenomenon has historically been overlooked due to the
typical workflows and assumptions surrounding classical model training. In
earlier practices, linear and parametric models were designed with a fixed
and limited capacity, constrained by a relatively small number of features.
These models typically operated in settings where the number of features, p,
was significantly smaller than the number of observations, n, in the dataset.
As a result, classical models seldom reach the interpolation threshold where
the double-descent phenomenon becomes observable. This limitation in model
complexity, while practical for the computational resources of the time, inad-
vertently obscured the rich behavior that occurs beyond the interpolation
threshold.

Non-parametric models, renowned for their flexibility and power, often
employ smoothing techniques and regularization to control their complexity.
Regularization, in particular, plays a crucial role in reducing the effective ca-
pacity of the model by penalizing the magnitude of model parameters. This
approach effectively prevents the model from interpolating the training data,
a key condition for observing double descent. The widespread use of regu-
larization techniques in non-parametric models inadvertently suppressed the
occurrence of the double-descent phenomenon, as these regularized models
typically operate in a regime far from the interpolation threshold. This prac-
tice, while effective in preventing overfitting, also masked the potential benefits
of over-parameterization that we now recognize.

The understanding of the double-descent phenomenon began to gain
prominence through seminal contributions in recent years, marking a sig-
nificant shift in our understanding of model behavior [3], formally intro-
duced the concept of the interpolation regime. This significant work presented
both theoretical and empirical evidence for the existence and ubiquity of the

132 Deep Learning Generalization

double-descent phenomenon across a broad spectrum of high-complexity mod-
els. The authors demonstrated that as model complexity increases beyond the
interpolation threshold, test error often decreases again, contradicting the clas-
sical bias-variance intuition. This revelation challenged long-held beliefs about
the relationship between model complexity and generalization performance,
opening new avenues for research and model design.

Building upon this foundation, [14] further extended our understanding
by studying double descent in deep neural networks. Their work provided
compelling empirical evidence of the doubly descending risk curve as a function
of both model size and the number of training iterations. These results showed
that increasing model size, represented by the number of parameters p, can
reduce test error even after reaching the interpolation threshold. Similarly,
their research revealed that prolonged training could further reduce test error,
highlighting the non-monotonic nature of risk reduction in over-parameterized
regimes. These findings challenged the conventional wisdom that larger models
and more training inevitably lead to overfitting, suggesting instead that there
are benefits to pushing beyond traditional limits of model complexity.

In addition to these insights into model size and training duration, [14] fur-
ther identified the intriguing phenomenon of sample non-monotonicity. They
observed that, in certain cases, adding more training data to the dataset can
paradoxically degrade test performance. This surprising result challenges the
long-held belief that larger datasets invariably improve generalization. The
discovery of sample non-monotonicity underscores the complex interplay be-
tween model capacity, dataset size, and generalization performance, suggesting
that the relationship between these factors is more nuanced than previously
thought. This finding has significant implications for data collection and model
training strategies in machine learning.

The emergence of these works has fundamentally reshaped our understand-
ing of the bias-variance trade-off in modern machine learning. By highlighting
the critical role of the interpolation threshold and over-parameterized regimes,
they have bridged the gap between classical statistical paradigms and contem-
porary deep learning practices, providing a unified perspective on the dynam-
ics of model generalization. This new understanding has not only reconciled
seemingly contradictory observations in machine-learning practice but has also
opened up new research directions and practical strategies for model design
and optimization. As we continue to explore the implications of double descent
and related phenomena, we are likely to uncover even more insights that will
further refine our approach to building and training machine-learning models.

4.2 Double Descent in Polynomial Regression

In the previous chapter, we explored the task of modeling a nonlinear rela-
tionship between a univariate predictor in X and an outcome variable y using

Modern Perspectives on Generalization 133

polynomial regression. This approach allows us to capture complex, non-linear
patterns in data. By expressing y as a function of X with an additive error
term, the model’s prediction takes the form ŷ = fw(X), where fw(X) rep-
resents the polynomial regression function parameterized by weights w. This
formulation provides a flexible framework for modeling a wide range of rela-
tionships between variables.

Specifically, the polynomial regression function fw(X) is defined as
fw(X) = Φ(X)w, where Φ(X) denotes the design matrix for polynomial fea-
tures of X , and w is the corresponding vector of coefficients. Expanding this
expression, we can write the function as a sum of polynomial terms:

fw(X) =

p
∑

i=0

wiX
i = w0 + w1X + w2X

2 + · · ·+ wpX
p.

This formulation allows for great flexibility in modeling, as the degree of
the polynomial can be adjusted to capture increasingly complex relationships.
For example, if we restrict the degree of the polynomial to p = 2, the regression
model becomes:

fw(X) = w0 + w1X + w2X
2,

which captures quadratic relationships between the predictor X and the re-
sponse variable y. This quadratic model can represent a variety of nonlinear
patterns, including parabolic relationships that are common in many real-
world phenomena.

Training a polynomial regression model involves estimating the weight
vector w that minimizes a chosen loss function, typically the mean squared
error, over the training dataset {(x(i), y(i))}ni=1. This process aims to find the
optimal coefficients that best fit the observed data. However, as we increase the
degree of the polynomial, p, we encounter both opportunities and challenges. A
higher polynomial degree results in a more flexible model capable of capturing
intricate patterns in the data, potentially reducing bias and improving the fit
to the training data. However, this increased flexibility comes at a cost: it
also leads to a higher risk of overfitting, characterized by a wiggly fit and high
variance. This high variance arises because the model becomes overly sensitive
to small fluctuations in the training data, potentially capturing noise rather
than underlying patterns.

The challenge, therefore, lies in striking a delicate balance: we want to
accurately represent the training data while keeping the model smooth and
simple enough to avoid overfitting and ensure good generalization to unseen
data. This balance is crucial for creating models that are not only accurate
on the training set but also perform well on new, unseen data, a fundamental
goal in machine-learning and statistical modeling.

To achieve this balance, smoothing splines offer an effective and elegant
solution. A smoothing spline introduces an explicit smoothness constraint dur-
ing the fitting process. This constraint penalizes the complexity of the model
by discouraging large fluctuations in the fitted curve, effectively controlling

134 Deep Learning Generalization

its flexibility. Mathematically, this is achieved by minimizing a loss function
that incorporates both the goodness-of-fit to the training data and a penalty
term that enforces smoothness. This approach allows us to use high-degree
polynomials while mitigating the risk of overfitting, providing a powerful tool
for nonlinear regression.

The smoothing spline framework can reveal the double-descent phe-
nomenon. By controlling the smoothness of the polynomial regression model,
smoothing splines allow for high-degree polynomials to generalize well without
succumbing to the adverse effects of high variance. This ability to maintain
good performance even with highly complex models is key to understanding
and leveraging the double-descent effect. In the next section, we will delve
deeper into the mathematical formulation of smoothing splines and demon-
strate their role in mitigating the double-descent effect. This exploration will
provide valuable insights into how we can design and train models that achieve
excellent performance across a wide range of complexities.

4.2.1 The smoothing spline

The term “spline” has its roots in a tool historically used by draftsmen and
shipbuilders to create smooth curves. In classical statistics, splines have been
widely employed to construct flexible functional forms, providing a powerful
method for modeling complex relationships in data. The process of fitting a
spline typically begins by identifying knots, which are points where two smooth
curves join. The challenge then lies in fitting a curve between consecutive knots
that not only captures the underlying pattern in the data but also maintains
smoothness and continuity across the entire range.

To ensure the smoothness and continuity of the resulting curve, statis-
ticians impose constraints on the derivatives of a specific order. A common
and particularly effective approach is to utilize the second derivative of the
fitted function and penalize the integrated squared second derivatives. This
penalty serves a dual purpose: it ensures that the curve is not overly rough
or wiggly, while simultaneously minimizing the residual sum of squares (RSS)
between the model predictions and the target outcomes. This balance between
smoothness and fit is at the heart of the spline approach.

Formally, we can define the penalty on the second derivative of the function
fw as:

J(w) =

∫
(
f ′′
w(x)

)2
dx.

This penalty term J(w) plays a crucial role in regulating the curvature
of the model, effectively discouraging excessive fluctuations that might repre-
sent noise rather than true underlying patterns. In the context of smoothing
splines, the resulting model seeks to minimize a cost function that incorporates

Modern Perspectives on Generalization 135

FIGURE 4.5
Penalized cost function for the smoothing spline model.

both the fit to the data and this smoothness penalty:

Q(w) =
n∑

i=1

(
y(i) − fw(x

(i))
)2

+ λ

∫
(
f ′′
w(x)

)2
dx,

where λ is a weighting factor, or regularization parameter, that determines
the tradeoff between the fidelity to the training data and the roughness of
the curve. The selection of this parameter λ is typically performed through
cross-validation, as its value critically influences the behavior of the resulting
model.

The role of λ in shaping the model’s behavior is profound and nuanced.
A larger λ enforces greater smoothness by heavily penalizing high curvature,
resulting in a smoother functional form that may sacrifice some fit to the data
in favor of simplicity. Conversely, a smaller λ allows for more curvature, po-
tentially leading to a rougher curve that better fits the individual data points
but may be more prone to overfitting. When λ → 0, the penalty term effec-
tively vanishes, and the cost function reduces to the RSS. In this scenario,
the model essentially becomes an interpolating spline, which perfectly fits the
training data but may take on a highly wiggly shape that poorly generalizes
to new data. At the other extreme, as λ → ∞, the roughness penalty dom-
inates the cost function, constraining the model to be a linear function, as
this minimizes the second derivative everywhere. Between these extremes, λ
serves as a critical hyperparameter that governs the balance between overfit-
ting and underfitting, allowing the model to capture complex patterns while
maintaining reasonable smoothness.

Figure 4.5 provides a visual illustration of these opposing forces in the pe-
nalized cost function. The RSS component promotes fitting the training data
closely, while the roughness penalty encourages smoothness in the functional
form.

The second derivative, f ′′
w(x), plays a central role in this framework by

measuring the rate of change of the slope of the fitted curve. It provides a
quantitative measure of the roughness of the curve, with higher values of f ′′

w(x)

136 Deep Learning Generalization

corresponding to more abrupt changes in curvature. By incorporating J(w)
into the cost function, the smoothing spline framework can avoid the need to
predefine the number of knots in the model, a task that can be challenging and
somewhat arbitrary. Instead, the degree of smoothness is automatically deter-
mined by the balance dictated by λ. A high penalty discourages roughness
and promotes smooth curves, while a low penalty allows the model to cap-
ture more complex patterns in the data, adapting to the underlying structure
without requiring manual specification of the model’s flexibility.

This approach exemplifies how statistical learning can achieve a delicate
balance between model complexity and generalization by introducing prin-
cipled constraints on the functional form. The smoothing spline framework
demonstrates that by carefully controlling the smoothness of the fitted func-
tion, we can create models that are both flexible enough to capture complex
relationships and constrained enough to avoid overfitting.

4.2.2 Rewriting the smoothing spline cost function

Rewriting the smoothing spline cost function establishes a critical connection
between classical linear regression, ridge regression, and smoothing splines,
illuminating the evolution of regularization techniques in statistical modeling.
Recall that the closed-form solution for linear regression is derived by setting
the gradient of the cost function Q(w) to zero and solving a system of normal
equations:

ΦTΦw = ΦT y.

Here, Φ denotes the design matrix (which could be a transformed and
augmented version of the original design matrixX), w is the vector of weights,
and y represents the target outcomes. This fundamental equation forms the
basis for more advanced regularization techniques. When a new penalty term
J(w) is introduced, the derivation proceeds by incorporating the first-order
gradient, leading to a more generalized normal equation that balances data
fit with model complexity.

Using the same matrix notation, we can express the prediction function
for the polynomial regression model as fw = Φw. This formulation allows us
to reformulate the cost function in a more compact and insightful manner:

Q(w) = ‖y − Φw‖2 + λwTΩw.

In this expression, Φ represents the list of polynomial basis functions used
to construct the design matrix, and each entry (Φ)jk is defined as φk(x

(j)) =
(x(j))k, where φk denotes the kth polynomial basis function applied to the
jth input x(j). The double vertical bars ‖ · ‖2 indicate the squared norm,
which quantifies the sum of squared residuals between the predictions Φw
and the target vector y. The matrix Ω plays a crucial role in this formulation,
encoding the integrated second derivatives of the basis functions and acting

Modern Perspectives on Generalization 137

as the roughness penalty. Formally, the entries of Ω are given by:

(Ω)jk =

∫

φ′′
j (x)φ

′′
k(x) dx,

where φ′′
j (x) and φ′′

k(x) denote the second derivatives of the jth and kth basis
functions, respectively. This integral form of Ω captures the essence of the
smoothness constraint, penalizing rapid changes in the curvature of the fitted
function.

This formulation bears a striking resemblance to the cost function of ridge
regression but with a crucial distinction: the introduction of the Ω term in the
penalty. In ridge regression, the penalty term is proportional to the squared
norm of the weights, leading to normal equations of the form:

(ΦTΦ+ λI)w = ΦT y,

where I is the identity matrix, a diagonal matrix with ones along the main
diagonal and zeros elsewhere. This form of regularization uniformly penalizes
large weight values. For smoothing splines, however, the generalized normal
equations take on a more sophisticated form:

(ΦTΦ+ λΩ)w = ΦT y.

The additional Ω term accounts for the second-derivative roughness
penalty, making the smoothing spline formulation more general and flexible
than ridge regression. This generalization allows for a more nuanced control
over the smoothness of the fitted function. In fact, when Ω = I, the smoothing
spline cost function reduces to the ridge regression cost function, highlighting
the relationship between these regularization techniques.

Figure 4.6 provides a comparison of linear regression, ridge regression, and
smoothing splines by highlighting the role of the penalty term, the formula-
tion of the cost function, and the resulting normal equations under different
penalization schemes. This comparison underscores the evolutionary nature of
these regularization techniques, from the simplicity of linear regression to the
sophisticated smoothness control of smoothing splines. Notably, the smooth-
ing spline model extends ridge regression by incorporating an additional term
that penalizes the roughness of the fitted function. This penalty ensures that
the resulting function is not only well-fitted to the data but also smooth and
continuous, striking a balance between fidelity to the data and the underlying
assumption of smoothness in the true relationship.

4.2.3 Deriving the closed-form solution

To derive the closed-form solution for the smoothing spline problem, we ex-
tend the concept of normal equations used in linear regression by introducing
an augmented design matrix and an additional vector. This approach pro-
vides a general framework for incorporating the smoothness penalty into the

138 Deep Learning Generalization

FIGURE 4.6
Summarizing the penalty term, cost function, and normal equations under
different penalization schemes.

regression model. The augmented design matrix, denoted as Φ∗, combines
the original design matrix Φ with additional rows contributed by the penalty
term. Formally, this is expressed as:

Φ∗ =

(
Φ√
λB

)

,

where B is defined such that BTB = Ω, and Ω is the previous p×p symmetric
penalty matrix encoding the second-derivative roughness penalties. By scaling
Ω by

√
λ, we ensure that the penalty term λwTΩw is properly incorporated

into the augmented matrix Φ∗. This augmentation effectively concatenates p
additional rows to Φ, with

√
λB contributing the rows associated with the

penalty term. This construction allows us to integrate the smoothness con-
straint into the regression framework.

Similarly, the output vector y is extended by appending p zeros to the end,
forming the augmented output vector:

y∗ =

(
y
0

)

.

This augmentation of the output vector complements the extended design
matrix, ensuring that the dimensions of the system remain consistent while
incorporating the penalty term.

With the augmented design matrix Φ∗ and output vector y∗, we can con-
struct the normal equations for the augmented system. Based on the original
normal equations Φw = y, the augmented equations are:

Φ∗w = y∗

Multiplying both sides by ΦT
∗ , we obtain:

Modern Perspectives on Generalization 139

ΦT
∗ Φ∗w = ΦT

∗ y∗.

This step is crucial as it transforms the problem into a form that can be
solved using standard linear algebra techniques. Substituting the expressions
for Φ∗ and y∗, this expands to:

(

ΦT
√
λBT

)
(

Φ√
λB

)

w =
(

ΦT
√
λBT

)
(
y
0

)

.

Carrying out the matrix multiplications yields:

(ΦTΦ+ λBTB)w = ΦT y.

Since BTB = Ω, this simplifies to:

(ΦTΦ+ λΩ)w = ΦT y.

This result introduces the penalty term λΩ into the normal equations,
accounting for the roughness constraints imposed by the second-derivative
penalty. The resulting equation provides a balanced solution that considers
both the fit to the data and the smoothness of the function.

It turns out that the cost function can also be reformulated using the
augmented variables Φ∗ and y∗, as follows:

Q(w) = ‖y − Φw‖2 + λwTΩw = ‖y∗ − Φ∗w‖2.

This reformulation demonstrates how the augmented system encapsulates
both the data-fitting term and the smoothness penalty in a single squared
norm expression. Setting the gradient of Q(w) with respect to w to zero leads
to the same normal equations:

ΦT
∗ Φ∗w = ΦT

∗ y∗.

This derivation highlights the role of the augmented design matrix and
output vector in incorporating the penalty term into the least squares frame-
work. The augmented design matrix Φ∗ enlarges the column space of Φ from
R

n to R
n+p, which can stabilize the solution of the normal equations. This

expansion of the column space is particularly beneficial when dealing with ill-
conditioned or near-singular design matrices. Additionally, the matrix Ω often
undergoes transformations, such as eigendecomposition, to ensure that its col-
umn vectors are mutually orthogonal, further mitigating issues of collinearity.

An alternative derivation of the normal equations uses the first-order op-
timality condition, providing a different perspective on the problem. Taking
the gradient of Q(w) with respect to w and setting it to zero gives:

∂Q(w)

∂w
=

∂

∂w

(
(y−Φw)T (y−Φw)+λwTΩw

)
= −2ΦTy+2ΦTΦw+2λΩw = 0.

140 Deep Learning Generalization

Rearranging terms yields:

(ΦTΦ+ λΩ)w = ΦT y.

While both approaches lead to the same normal equations, the augmented
matrix approach provides deeper insights into the geometric interpretation of
the penalty term. By expanding the column space of Φ, the augmented system
ensures greater stability of the solution, especially for large λ. Furthermore,
as λ increases, the extended column vectors in Φ∗ become more orthogonal,
enhancing numerical stability and robustness in solving the normal equations.
This geometric perspective underscores the value of the augmented formula-
tion in addressing challenges such as collinearity and overfitting in the original
design matrix Φ. The augmented approach not only provides a mathematically
elegant solution but also offers practical benefits in terms of computational
stability and interpretability of the smoothing spline model.

4.2.4 Implementing the smoothing spline model

To demonstrate the double-descent phenomenon using the smoothing spline
model, we begin by defining a true underlying function to approximate. This
function, which will be unknown to the machine learner, represents a piecewise
linear form given by:

y = |||x− 0.4|| − 0.2|+ x

2
− 0.1,

where x represents the single input variable. The function includes absolute
value transformations, ensuring piecewise linear behavior across different re-
gions of the input space. See the following code listing for its definition.

1 # Function to represent the true underlying piecewise linear

function

2 def get_true_y (x):

3 return np.abs (np.abs (x - 0.4) - 0.2) + x / 2 - 0.1

Listing 4.1
True Underlying Function.

Next, we generate equally spaced input points across the range [0, 1] to
evaluate and plot out the corresponding function values via a line chart.

1 # Import necessary libraries

2 import math

3 import matplotlib .pyplot as plt

4 import numpy as np

5 from numpy import random

6

7 # Set seed to ensure reproducibility

8 random .seed (1)

9

10 # Generate evenly spaced input values

Modern Perspectives on Generalization 141

11 X_vals = np.linspace (0, 1, 100).reshape (-1, 1)

12

13 # Compute the true function values

14 y_vals = get_true_y (X_vals)

Listing 4.2
Generating Functional Evaluations.

Our goal is to approximate this function using the smoothing spline model
with a varying number of polynomial basis terms. We first implement a trans-
formation function to map the original univariate inputs x into a new design
matrix Φ, where each column corresponds to a higher-degree polynomial term:

Φjk = φk(x
(j)) = (x(j))k, k ∈ {0, 1, . . . , d},

where d denotes the maximum degree of the polynomial.

1 # Function to generate the new design matrix with polynomial

basis

2 def polynomial (x, num_basis =2) :

3 # Create a zero -initialized design matrix

4 Phi = np.zeros ((x.shape [0], num_basis))

5

6 # Fill in each column with the corresponding polynomial term

7 for i in range (num_basis):

8 Phi [:, i:i+1] = x ** i

9

10 return Phi

Listing 4.3
Generating Polynomial Function.

Now for the roughness penalty J(w), it can approximated using the matrix
Ω such that:

J(w) = wTΩw, where Ωqr =
(q − 1)q(r − 1)r

q + r − 3
.

To derive the penalty matrix Ω, we start from the roughness penalty term
in the smoothing spline cost function:

J(w) =

∫
(
f ′′
w
(x)
)2

dx.

In the matrix-based implementation, this integral is approximated using
the quadratic form:

J(w) = wTΩw,

where Ω is the penalty matrix that encodes the contributions of the polyno-
mial basis functions to the roughness penalty. The smoothing spline uses a
polynomial basis, and the second derivative of the k-th basis function φk(x)
is given by:

φ′′
k(x) = k(k − 1)xk−2, k ≥ 2.

142 Deep Learning Generalization

The integral for J(w) can then be expanded as a double summation over
all pairs of polynomial basis functions:

J(w) =

p
∑

q=2

p
∑

r=2

βqrwqwr,

where βqr represents the interaction between the q-th and r-th basis functions.
Each βqr is computed as:

βqr =

∫

φ′′
q (x)φ

′′
r (x) dx.

Using the formula for the second derivative of the polynomial basis func-
tion, we have:

φ′′
q (x) = q(q − 1)xq−2, φ′′

r (x) = r(r − 1)xr−2.

The product of the second derivatives is:

φ′′
q (x)φ

′′
r (x) = q(q − 1)r(r − 1)xq+r−4.

The integral over the interval [0, 1] is then:

βqr =

∫ 1

0

q(q − 1)r(r − 1)xq+r−4 dx.

The integral of xq+r−4 is calculated as:
∫ 1

0

xq+r−4 dx =
1

q + r − 3
, q + r > 3.

Substituting this result, we get:

βqr =
q(q − 1)r(r − 1)

q + r − 3
.

Now we can use this closed-form solution to calculate the coefficients of
the model.

1 # Function to estimate coefficients of the smoothing spline model

2 def estimate_coef(X, y, num_basis):

3 # Generate the polynomial design matrix

4 Phi = polynomial (X, num_basis =num_basis)

5

6 # Define the penalty matrix omega

7 q = np.arange (2, num_basis).reshape (1, -1)

8 r = q.reshape (-1, 1)

9 omega = np.zeros ((num_basis , num_basis))

10 omega [2:, 2:] = (q - 1) * q * (r - 1) * r / (q + r - 3)

11

12 # Perform eigendecomposition for stability

13 values , vectors = np.linalg .eig(omega)

14 beta = vectors @ np.diag(values .clip(min =0) ** 0.5)

15

Modern Perspectives on Generalization 143

16 # Construct augmented matrices for the normal equations

17 y_star = np.concatenate ((y, np.zeros(omega.shape [0]).reshape

(-1, 1)), axis =0)

18 Phi_star = np. concatenate ((Phi , math.sqrt(rho) * beta.T),

axis =0)

19

20 # Solve the normal equations using least squares

21 w_star = np.linalg .lstsq(Phi_star , y_star , rcond=None)[0]

22

23 return w_star

Listing 4.4
Obtaining Closed-form Solution.

To evaluate the model performance, we calculate the empirical risk using
the MSE:

Q =
1

n
‖y − Φw‖2,

where Φ is the design matrix and w represents the estimated coefficients.

1 # Function to compute mean squared error

2 def calculate_mse(X, y, coef , num_basis):

3 # Expand the original design matrix

4 Phi = polynomial (X, num_basis =num_basis)

5

6 # Compute the model predictions

7 f_star = Phi @ coef

8

9 # Compute residuals and the MSE

10 resid = y - f_star

11 Q = np.dot(resid.T, resid).mean ()

12

13 return Q

Listing 4.5
Calculating MSE.

Finally, we run multiple simulations to compute the median training and
test MSE for different polynomial degrees by running different simulations.
The double-descent phenomenon is examined by plotting the training and
test risks against model complexity.

1 # Function to compute performance over multiple runs

2 def compute_performance(num_train_samples , num_runs ,

num_basis_max , train_noise_std =0):

3 # Placeholder matrices for storing MSE

4 mse_train = np.zeros ((num_runs , num_basis_max))

5 mse_test = np.zeros ((num_runs , num_basis_max))

6

7 for k in range (num_runs):

8 # Generate training data

9 X_train = random .rand(num_train_samples).reshape (-1, 1)

10 y_train = get_true_y (X_train).reshape (-1, 1)

11

144 Deep Learning Generalization

12 # Add noise to the training targets if specified

13 if train_noise_std > 0:

14 y_train += np.random .normal (0, train_noise_std ,

y_train .shape [0]).reshape (-1, 1)

15

16 # Generate test data

17 X_test = np.linspace (0, 1, 100).reshape (-1, 1)

18 y_test = get_true_y (X_test).reshape (-1, 1)

19

20 # Assess models with varying polynomial degrees

21 for num_basis in range(1, num_basis_max + 1):

22 fitted_coef = estimate_coef(X_train , y_train ,

num_basis)

23 mse_train [k, num_basis -1] = calculate_mse(X_train ,

y_train , fitted_coef , num_basis)

24 mse_test [k, num_basis -1] = calculate_mse(X_test ,

y_test , fitted_coef , num_basis)

25

26 return np.median (mse_train , axis =0) , np.median (mse_test , axis

=0)

27

28 # Global parameters

29 lamb = 1e-12

30 num_runs = 10

31 num_train_samples = 10

32 num_basis_max = 30

33

34 # Plot training and test MSE

35 fig = plt .figure ()

36 ax = fig. add_subplot (1, 1, 1)

37 ax.set_yscale (’log ’)

38 ax.set_xlabel (’Polynomial Degree ’, labelpad =10)

39 ax.set_ylabel (’MSE ’, labelpad =10)

40 ax.axvline (x=num_train_samples , color=’gray ’, linewidth =0.5,

linestyle =’--’)

41 ax.text(num_train_samples - 0.2, 1e-16, ’Interpolation Threshold ’

, fontsize =10, color=’gray’, rotation =90)

42

43 mse_train , mse_test = compute_performance (num_train_samples ,

num_runs , num_basis_max)

44 ax.plot(np.arange (1, num_basis_max + 1), mse_train , color=’blue ’,

linestyle =’--’, label=’Train ’)

45 ax.plot(np.arange (1, num_basis_max + 1), mse_test , color =’red ’,

label=’Test ’)

46 ax.legend (frameon =False)

47 plt .show()

Listing 4.6
Median MSE for Different Degrees of Polynomials.

Figure 4.7 demonstrates the empirical double-descent phenomenon. As ex-
pected, the training curve displays a monotonically decreasing trend as the
model becomes more complex. The test risk initially decreases with increasing
model complexity, peaks near the interpolation threshold, and then decreases
again as complexity continues to grow. This behavior highlights the unique

Modern Perspectives on Generalization 145

FIGURE 4.7
Median MSE against different degrees of polynomials.

generalization capabilities of over-parameterized models in modern machine
learning. In this case, we managed to reproduce such a phenomenon with the
help of a smoothness penalty in polynomial regression.

4.2.5 Observing goodness and roughness of fit with
polynomial degrees

To examine the relationship in model complexity (measured by the degree of
the polynomial) and the tradeoff between goodness and roughness of fit, we fit
the smoothing spline model with varying polynomial degrees. The following
code generates the training dataset, computes the true function values, and
visualizes the fitted model for various polynomial degrees and the resulting
goodness of fit. Each plot shows the true function, training points, and the
fitted polynomial curve.

1 # Generate the training set

2 X_train = random .rand(num_train_samples).reshape (-1, 1)

3 y_train = get_true_y (X_train).reshape (-1, 1)

4

5 # Generate test data points along the true function

6 X_test = np.linspace (0, 1, 100, dtype=X_train .dtype).reshape (-1,

1)

7 y_test = get_true_y (X_test).reshape (-1, 1)

8

9 # Fit and visualize the model for different polynomial degrees

10 for num_basis in range(1, num_basis_max + 1):

11 fig = plt.figure ()

12 ax = fig .add_subplot (1, 1, 1)

13 ax.set_title (f’Degree {num_basis - 1}’)

146 Deep Learning Generalization

14 ax.plot(X_test , y_test , color =’black ’, label=’True function ’,

linestyle =’--’) # Plot true function

15 ax.scatter (X_train , y_train , color=’blue’, label=’Train

samples ’) # Plot training samples

16

17 # Estimate model coefficients

18 fitted_coef = estimate_coef(X_train , y_train , num_basis)

19

20 # Generate predictions from the model

21 Phi = polynomial (X_test , num_basis = num_basis)

22 f_star = Phi @ fitted_coef

23

24 # Plot the fitted polynomial

25 ax.plot(X_test , f_star , color =’red ’, label=’Fitted polynomial

’)

26 ax.legend (frameon =False)

27 plt.show ()

Listing 4.7
Assessing Goodness of Fit with Varying Degrees of Polynomials.

Figure 4.8 shows the goodness of fit at different degrees of polynomials.
When the model uses up to the 1st degree of polynomial (two features, in-
cluding the constant term), the fitted model is a straight line:

fw(x) = w0 + w1x.

As we can see, the straight line does not capture the piecewise linear
behavior of the true function. This shows underfitting, as the model lacks the

FIGURE 4.8
Visualizing the goodness of fit at different degrees of polynomials.

Modern Perspectives on Generalization 147

flexibility needed to approximate the true relationship. Increasing the degree
of the polynomial is necessary to reduce the bias of the model.

With up to the 2nd degree of polynomial (three features), the fitted model
gains the ability to represent nonlinear relationships:

fw(x) = w0 + w1x+ w2x
2.

As shown in Figure 4.8, the quadratic term introduces curvature to the
fitted model, allowing it to approximate nonlinear patterns in the data. How-
ever, this curvature is still insufficient to closely follow the true function’s
piecewise linear structure, indicating the need for higher-order polynomials to
improve the fit.

Now, when the model includes up to the 6th degree of polynomial, it
becomes flexible enough to closely approximate the piecewise linear structure
of the true function:

fw(x) = w0 + w1x+ w2x
2 + · · ·+ w6x

6.

The fitted model accurately interpolates the training points. However, the
model displays high variance in regions where training points are sparse, as
evidenced by the steep dip between the first and second points. This is a
classical overfitting scenario, where the model becomes overly sensitive to
noise in the training data.

Finally, at the 16th degree of polynomial, the model enters the over-
parameterized regime. The number of features exceeds the number of training
points, but the addition of the roughness penalty in the cost function prevents
the model from overfitting excessively:

fw(x) = w0 + w1x+ w2x
2 + · · ·+ w16x

16.

This time, the fitted model achieves perfect interpolation of the train-
ing points while maintaining smoothness, as dictated by the roughness
penalty. This highlights the modern generalization phenomenon, where over-
parameterized models can achieve both low training error and stable test
performance.

The roughness penalty thus plays a pivotal role in stabilizing the model in
the over-parameterized regime, ensuring that adding more polynomial terms
does not degrade generalization performance. This contrasts with classical
generalization theory, where over-parameterizedmodels are expected to overfit
drastically.

4.2.6 Sample non-monotonicity in generalization
performance

In both classical and modern generalization theories, there is a prevail-
ing assumption that larger training datasets generally lead to better test
performance. However, this assumption does not always hold. In some cases,
increasing the size of the training set can lead to worse generalization per-
formance on the test set. This interesting phenomenon, referred to as sample

148 Deep Learning Generalization

non-monotonicity, highlights the nuanced relationship between the size of the
training data and the model’s test performance.

To investigate this phenomenon, we repeat the experiment from earlier
sections, this time varying the number of training samples. We measure MSE
in both the training and test sets for different polynomial degrees and plot
the results for multiple training sample sizes. The following code snippet plots
multiple MSE curves against the polynomial degree, with each curve corre-
sponding to a different number of training samples.

1 # Initialize the plot

2 fig = plt .figure ()

3 ax = fig. add_subplot (1, 1, 1)

4 ax.set_yscale (’log ’)

5 ax.set_xlabel (’Polynomial degree ’, labelpad =10)

6 ax.set_ylabel (’MSE ’, labelpad =10)

7

8 # Define the range of training sample sizes

9 num_train_samples_min = num_train_samples - 4

10 num_train_samples_max = num_train_samples

11

12 # Loop through different training sample sizes

13 for tmp_num_train_samples in range (num_train_samples_min ,

num_train_samples_max + 1, 2):

14 # Compute performance metrics for the current sample size

15 mse_train , mse_test = compute_performance(num_train_samples=

tmp_num_train_samples ,

16 num_runs =num_runs ,

17 num_basis_max=

num_basis_max ,

18 train_noise_std =0)

19 # Set color intensity based on the sample size

20 e = float(tmp_num_train_samples - num_train_samples_min) /

float (num_train_samples_max - num_train_samples_min)

21 e = 0.2 + 0.6 * e

22

23 # Plot training MSE curve

24 ax.plot(np.arange (1, num_basis_max + 1), mse_train , color =(e,

e, 1.0) ,

25 label=f’Train N={ tmp_num_train_samples }’, linestyle =’

--’)

26

27 # Plot test MSE curve

28 ax.plot(np.arange (1, num_basis_max + 1), mse_test , color

=(1.0 , e, e),

29 label=f’Test N={ tmp_num_train_samples }’)

30

31 # Add legend and vertical line for interpolation threshold

32 ax.legend (frameon =False)

33 ax.axvline (x=9, color =’gray’, linewidth =0.5, linestyle =’--’)

34

35 # Show the plot

36 plt .show()

Listing 4.8
Assessing Sample Non-monotonicity.

Modern Perspectives on Generalization 149

FIGURE 4.9
Observing the sample non-monotonicity phenomenon.

Here, the training sample size is varied to allow us to explore the impact of
different sample sizes. The curves for each sample size are also color-coded to
better differentiate, with the intensity determined by the relative size of the
training set. For each sample size, separate curves are plotted for the training
MSE and the test MSE.

The resulting plot, shown in Figure 4.9, reveals a counterintuitive trend:
in regions where the polynomial degree is up to the 9th, increasing the size of
the training set leads to a higher test MSE. This result highlights the sample
non-monotonicity phenomenon and challenges the traditional assumption that
more data always improves generalization performance.

Therefore, by analyzing test MSE across varying polynomial degrees and
training sample sizes, we observe regions where increasing the training set
leads to worse generalization. This highlights the nuanced interplay between
training data, model complexity, and generalization performance, motivating
further investigation into the conditions under which sample non-monotonicity
occurs.

4.3 Summary

The double-descent curve extends the classical U-shaped risk curve observed
in the bias-variance tradeoff. In classical settings, increasing model complex-
ity initially reduces bias but increases variance, resulting in a U-shaped test
error as a function of model complexity. However, the double-descent curve

150 Deep Learning Generalization

introduces a second descent in the over-parameterized regime, where the num-
ber of parameters far exceeds the number of training samples.

The double-descent curve manifests not only as a function of model com-
plexity but also as a function of training iterations. Early iterations may lead
to underfitting, while excessive iterations in over-parameterized models often
lead to better test performance due to implicit regularization effects.

Overfitting, characterized by high variance and poor generalization, can
be mitigated by increasing the number of parameters to move into the over-
parameterized regime. This approach leverages implicit regularization via op-
timization methods like SGD. Alternatively, we can reduce model capacity
through explicit regularization techniques, such as adding penalty terms to
the cost function.

Explicit regularization typically involves modifying the cost function. In
the smoothing spline framework, the penalty term measures the roughness
of the fitted function using its second derivative, which serves as a natural
measure of roughness. By penalizing the integrated squared second derivative
in the cost function, smoothing splines achieve a balance between goodness of
fit and smoothness. This term ensures that the fitted curve avoids excessive
oscillations while closely following the training data.

The EMC is a recently proposed concept to quantify the capacity of a
model during training. It is related to the maximum number of training sam-
ples for which the procedure achieves close to zero training error on average.
This metric better reflects the true capacity of a model compared to classical
notions of complexity.

Contrary to the conventional belief that more training data always im-
proves performance, the phenomenon of sample non-monotonicity demon-
strates that larger training datasets can sometimes worsen test performance.
This counterintuitive result depends on the interaction between data distri-
bution, training dynamics, and model complexity.

5

Fundamentals of Deep Neural Networks

Thus far, we have focused on understanding how the addition of features and
the control of model complexity influence a model’s ability to approximate the
true underlying function. For instance, in the preceding chapter, we observed
that the approximation capacity of a polynomial function improves with the
inclusion of higher-degree terms. This process is essentially a form of functional
approximation, where a complex function is represented as a combination of
simpler basis functions. The objective, therefore, is to construct a machine-
learning model that is sufficiently expressive to closely approximate the true
underlying function f .

The addition of parameters introduces a trade-off: while more parame-
ters can enhance the model’s expressiveness, they may also lead to over-
parameterization. In the classical learning paradigm, over-parameterization
often tends to be avoided as it risks overfitting. However, in the modern in-
terpolation regime, this notion has shifted, and over-parameterization is often
embraced for its surprising generalization capabilities, which occur in many
contexts when the model is properly trained with a certain form of regulariza-
tion, either implicit or explicit. This paradigm is particularly intriguing in the
context of neural networks, where the question arises: What class of functions
can be effectively modeled and approximated by these architectures?

The universal approximation theorem for neural networks provides a start-
ing answer to this question. This theorem says that, neural networks possess
the theoretical capacity to approximate any continuous function f in a com-
pact domain to an arbitrary degree of accuracy, given a sufficiently powerful
width and appropriately chosen weights for the network. This theorem un-
derscores the remarkable flexibility and expressiveness of neural networks,
enabling them to map inputs to outputs with virtually any desired level of
precision. The crux of this capability lies in the proper training of weights w
and selection of architectural configurations.

In this chapter, we will dive deeper into how neural networks carry out this
approximation exercise. We will begin with the fundamental building block of
these models: the perceptron. A perceptron is a unit that performs a linear
transformation followed by a nonlinear activation. It forms the basis for more
complex computations within a network. By stacking multiple perceptrons
into layers, neural networks can develop the capacity to approximate highly
nonlinear functions, thus justifying their utility as universal approximators.

DOI: 10.1201/9781003511601-5 151

https://doi.org/10.1201/9781003511601-5

152 Deep Learning Generalization

5.1 Multilayer Perceptron

A multilayer perceptron (MLP) is one of the most fundamental structures in
neural networks. It consists of an input layer that represents the input features
from the observationsX , an output layer that generates predictions ŷ, and one
or more hidden layers in between, representing the black-box transformations
that map an input to an output. Each hidden layer comprises one or more
neurons, which act as learns that extract hidden features at different levels.
Note that the depth of a neural network is defined as the number of hidden
layers plus the output layer, excluding the input layer. A perceptron is just
a simple neural network that has no hidden layers and consists only of input
and output layers.

More specifically, a perceptron performs two mathematical operations: a
weighted sum and a nonlinear transformation. For an observation x ∈ R

p

with p features, the perceptron first calculates the weighted sum of the input
features with their associated weights w ∈ R

p as:

z =

p
∑

i=1

wixi = w⊤x.

To further enhance flexibility, an additional bias term b ∈ R is often intro-
duced by default, allowing the perceptron to adjust the weighted sum by a
constant shift. This bias term enables the perceptron to better fit the data by
introducing a global adjustment to the function’s output. Incorporating the
bias term, the weighted sum becomes:

z = w⊤x+ b.

After computing the weighted sum, the perceptron applies an activation func-
tion φ(z) to introduce nonlinearity to the weighted sum. This step is crucial
because, without nonlinear transformations, even a deep neural network would
simply reduce to a composition of nested linear functions, which essentially
becomes one single linear model. Nowadays, the most popular activation func-
tion is called the Rectified Linear Unit (ReLU), defined as:

φ(z) = max(0, z),

which outputs z if z > 0 and zero otherwise. ReLU allows the perceptron to
“activate”, or “fire,” for positive inputs while zeroing out, or muting, negative
ones. This nonlinearity, combined with potentially complex architecture design
(e.g., the number of layers and neurons per layer), provides neural networks
with sufficient expressivity and approximation power. Figure 5.1 summarizes
the process flow of a perceptron.

Now consider a simple example of a two-layer neural network with a two-
dimensional input x ∈ R

2. We define both the hidden layer and the output

Fundamentals of Deep Neural Networks 153

FIGURE 5.1
The process flowchart of a perceptron, which consists of a weighted sum op-
eration followed by an activation function. A column of ones is automatically
added to introduce a bias term in the weight vector.

layer to contain only one neuron, respectively. Without activation, the com-
putation in the hidden layer is given by:

z = w11x1 + w12x2 + b1,

where w1
1 and w2

1 are the weights in the first hidden layer, where the subscript
denotes the layer index and the superscript denotes the node index. b1 is the
bias term for the first hidden layer. The output of the network, if not using
any nonlinear transformation, is then:

y = w2z + b2 = w2(w
1
1x1 + w2

1x2 + b1) + b2.

Expanding this expression yields:

y = w2w
1
1x1 + w2w

2
1x2 + w2b1 + b2,

which is clearly a linear function of x1 and x2. This linearity also persists
even in deeper or wider networks if no activation function is applied. Hence,
the introduction of nonlinearity through activation functions like ReLU is
essential for us to escape away from linearity and develop more capacity to
model complex, nonlinear relationships.

More formally, the operation embedded in a perceptron can be expressed
as:

f(x) = φ(w⊤x+ b),

where φ is the activation function, w is the weight vector, and b is the bias.
ReLU ensures that negative values are set to zero, while positive values are
retained.

154 Deep Learning Generalization

In a multilayer neural network, the operation in an arbitrary l-th layer can
be recursively defined as:

f (l)(x) = φ(Wlf
(l−1)(x) + bl),

where Wl and bl are the weight matrix and bias vector for the l-th layer
(assuming there are more than one node in a layer), and f (l−1)(x) is the output
from the (l − 1)-th layer. For the first layer, the input is simply f (0)(x) = x.
The final output of the network, with L layers, is expressed as:

f (L)(x) = φ (WLφ (WL−1φ (· · ·φ (W1x+ b1) · · ·) + bL−1) + bL) .

We can see that it is this repeated application of linear transformations and
nonlinearities that enable the network to approximate highly complex func-
tions.

Overall, the computational efficiency of ReLU, particularly during back-
propagation, is a key reason for its popularity. When z ≤ 0, the gradient of
ReLU is zero, thus ignoring the parameter update via gradient descent. For
z > 0, the gradient of ReLU is 1, thus propagating as-is. These properties
make ReLU both efficient and effective for training deep networks.

The following code snippet shows how to define the ReLU activation func-
tion and apply it to each element in an input list. We see that the value of -1
is set to zero due to the zeroing effect for negative values, while the other two
remain the same.

1 def relu(x):

2 return np.maximum (x, 0)

3 >>> relu ([1,-1,2])

4 # Output

5 array ([1, 0, 2])

Listing 5.1
Defining ReLU Operation.

Figure 5.2 illustrates the ReLU activation function and its role in intro-
ducing nonlinearity. In practice, input x can also be represented as a ten-
sor in frameworks like PyTorch, facilitating efficient computation for high-
dimensional data. This combination of nonlinear activation and architectural
flexibility enables neural networks to automatically extract meaningful hier-
archical features, such as edges or shapes of objects in image classification
tasks, which would be challenging to design and extract manually or using
other models.

5.1.1 A two-layer neural network

A two-layer neural network consists of nodes (representing features) and edges
(representing weights). The architecture of such a network needs to be man-
ually specified in advance, after which an optimization process is invoked to

Fundamentals of Deep Neural Networks 155

FIGURE 5.2
Decomposing a single perceptron into a weighted sum and an activation func-
tion of ReLU.

compute an optimal set of weights based on the given training data and loss
function. Multiple factors influence the final out-of-sample performance of the
trained model, including the quality of the training data, the suitability of the
network architecture, and the quality of the estimated weights. These factors
jointly determine the generalization performance of the model.

Let us analyze the approximation capacity of a simple two-layer neural
network with a ReLU activation function. This network comprises one hidden
layer and one output layer. For simplicity, we assume a one-dimensional scalar
input x, a hidden layer with five nodes, and a one-dimensional output. The
network can then be expressed as:

f(x) = w⊤
2 φ(w1x+ b1),

where w1 = {w1
1, w

2
1 , w

3
1 , w

4
1 , w

5
1}, b1 = {b11, b21, b31, b41, b51}, and w2 =

{w1
2, w

2
2 , w

3
2 , w

4
2 , w

5
2} are all 5 × 1 vectors of weights and biases, respectively.

For simplicity, the scalar bias term b2 between the hidden and output layers is
omitted, and the output layer directly computes a weighted sum without ap-
plying an activation function. Each element in the bias vector b1 corresponds
to a unique neuron in the hidden layer. Figure 5.3 illustrates the architecture
of the two-layer network, where the hidden layer outputs a 5 × 1 vector of
intermediate features, and the output layer generates a scalar output via a
weighted sum of these five hidden features.

To implement this network, we begin by initializing the input data and
random weights for both layers. The hidden layer computes the weighted sum
followed by applying the ReLU function, and the output layer computes the
final result via a linear combination of these activated nodes. The following
Python code demonstrates this process:

156 Deep Learning Generalization

FIGURE 5.3
Depicting the architecture of a two-layer network.

1 import numpy as np

2 import matplotlib .pyplot as plt

3

4 # Create an array of inputs

5 xs = np.linspace (-2, 2, 100)

6

7 # Randomly initialize the weights and biases

8 W1 = np.random .uniform (low =-1, high=1, size=(5, 1))

9 b1 = np.random .uniform (low =-1, high=1, size=(5, 1))

10 W2 = np.random .uniform (low =-1, high=1, size=(5, 1))

11

12 # Compute hidden layer activations and final output

13 first_layer_activations = np.maximum (0, W1 * xs + b1)

14 final_output = np.dot (W2.T, first_layer_activations)

15

16 # Visualize the activations of individual neurons

17 plt .figure (figsize =(8, 6))

18 plt .plot(np.tile(xs[:, None], 5), first_layer_activations .T)

19 plt .xlabel (’x ’)

20 plt .ylabel (’Hidden layer activation output ’)

21 plt .yticks ([])

22 plt .show()

Listing 5.2
Intermediary Activations.

Fundamentals of Deep Neural Networks 157

FIGURE 5.4
Visualizing the activation output of the five neurons in the hidden layer.

The code above generates Figure 5.4, showing the activations of the five
neurons in the hidden layer. Each activation function has a ReLU-like shape
but differs in three aspects: the turning point (threshold), the slope of the
linear segment, and the direction of the slope. These activations are derived
features (to be) automatically learned in the hidden space, contrasting with
the manually engineered polynomial features from the previous chapter. Dur-
ing optimization, these features evolve to better represent the input data,
offering diverse perspectives at various levels of granularity. They can also be
interpreted as a set of learned basis functions.

The output of the final layer is a linear combination of these basis functions.
To further examine the transformations, we visualize the final fitted model and
highlight the breakpoints due to these ReLU activations. Breakpoints occur
where the ReLU output transitions from zero to positive. These points can be
identified by setting the ReLU output to zero and solving for the corresponding
input value. The following code achieves this:

1 # Visualize the final output of the two -layer network

2 plt .figure (figsize =(8, 6))

3 plt .plot(xs, final_output[0, :], ’k:’) # Plot the final output

4

5 # Compute and plot breakpoints

6 breakpoints = (-b1 / W1).T

158 Deep Learning Generalization

FIGURE 5.5
Visualizing the final layer’s output.

7 f_breakpoints = np.dot(W2.T, np.maximum (0, W1 * breakpoints + b1)

)

8 plt .plot(breakpoints , f_breakpoints , ’.’, markersize =18)

9 plt .xlabel (’x ’)

10 plt .ylabel (’$f(x)$’)

11 plt .show()

Listing 5.3
Identifying Breakpoints.

The plot in Figure 5.5 reveals that the final output is piecewise linear,
with turning points defined by the intersections of the ReLU activations in
the hidden layer. Between these breakpoints, the function behaves linearly,
highlighting the piecewise linear nature of the model. The number of break-
points is determined by the number of activation functions in the hidden
layer, meaning that the complexity of the final output is linearly related to
the number of neurons in the hidden layer.

The expressivity of a neural network is directly influenced by the width of
its hidden layers. Increasing the number of nodes in a shallow neural network
enhances its ability to model complex functions but comes with an increased
computational cost. Instead of widening the network, a more efficient approach
is to increase its depth by stacking additional layers, forming a deep neural

Fundamentals of Deep Neural Networks 159

network. Models with multiple hidden layers, often referred to as deep neu-
ral networks, achieve greater approximating power with fewer computational
resources, making them the preferred choice for large-scale problems.

5.1.2 Shallow versus deep neural networks

We know that a shallow neural network, which could be composed of one
hidden layer followed by an output layer, offers limited flexibility. The model’s
expressivity is constrained by the number of nodes (or neurons) in the hidden
layer. If we want an additional breakpoint or linear segment in the output,
we need to add another node in the hidden layer. These hidden neurons act
as basis functions that are linearly combined to generate the final output.
Consequently, the complexity of a shallow neural network grows linearly with
the number of hidden nodes.

In contrast, a deep neural network achieves significantly greater expres-
sivity with fewer nodes per layer, where each layer is stacked on top of the
other. Specifically, the complexity of a deep neural network, when measured
by the number of breakpoints or linear segments in its output, grows expo-
nentially with the number of hidden layers. To illustrate, we will consider
a hand-designed deep neural network using ReLU activation functions and
analyze how its complexity evolves as the network becomes deeper.

Suppose that we wish to implement the following “sawtooth” network
model, where the relationship between the current layer fl(x) and the previous
layer fl−1(x) is given by:

fl(x) = 2|fl−1(x)| − 2.

For the initial layer, we set:
f0(x) = x.

The absolute value function can be decomposed into two cases: if the input is
positive, the output remains unchanged; if the input is negative, the output
is negated. Using ReLU, the absolute value function can be implemented as:

fl(x) = 2ReLU(fl−1(x)) + 2ReLU(−fl−1(x)) − 2.

Here, the weights are fixed, and no learning occurs. The focus is on the ap-
proximating power of this structured network. Using the code snippet below,
we define a two-neuron hidden layer that implements this transformation:

1 # Define a single layer of the sawtooth network

2 def layer (x):

3 return 2 * np.maximum (0, x) + 2 * np.maximum (0, -x) - 2

4

5 Next , we build the full network by sequentially stacking these

layers . The number of layers can be specified to control the

depth of the network :

6

7 # Define a multilayer sawtooth network

160 Deep Learning Generalization

FIGURE 5.6
Visualizing model output with varying numbers of hidden layers.

8 def multilayer (x, hidden_layers=1):

9 f = x # First layer output is the input itself

10 for _ in range (hidden_layers): # Sequentially stack layers

11 f = layer(f)

12 return f

Listing 5.4
Implementing Sawtooth Network.

By varying the number of hidden layers, we can observe how the output of
the network changes. For example, we can compute and visualize the output
for networks with zero to five hidden layers:

1 # Visualize the outputs for varying numbers of hidden layers

2 numlayers = 6

3 fig , axs = plt.subplots (numlayers , 1, figsize =(8, 25))

4 for i, ax in enumerate (axs):

5 ax.plot(xs, multilayer (xs, hidden_layers=i))

6 ax.set_ylim ([-3, 3])

7 ax.legend ([f’$f_ {{{ i}}}(x)$’])

8 plt .show()

Listing 5.5
Varying the Number of Hidden Layers.

The outputs reveal exponential growth in complexity as we increase the
number of hidden layers, as shown in Figure 5.6.

We analyze four cases in the following:

Fundamentals of Deep Neural Networks 161

• No hidden layer: The output is simply the input itself, as shown in the
top left panel of Figure 5.6:

f0(x) = x.

• One hidden layer: The output consists of two linear segments, correspond-
ing to the absolute value function implemented by two ReLU activations,
as shown in the top right panel of Figure 5.6:

f1(x) = 2|x| − 2.

• Three hidden layers: With three hidden layers, the output consists of
23 = 8 linear segments, as illustrated in the bottom left panel of Figure
5.6. This exponential growth demonstrates the increasing approximation
power of deeper networks, where the final output can be expressed as:

f3(x) = 2ReLU(f2(x)) + 2ReLU(−f2(x)) − 2.

• Five hidden layers: With five hidden layers, the number of breakpoints
grows to 25 = 32, as shown in the bottom right panel of Figure 5.6. In
comparison, a shallow network with 10 nodes in one hidden layer could
only achieve a maximum of 10 breakpoints, highlighting the advantage of
depth in increasing expressivity.

Deep networks attribute their superior representational power to this ex-
ponential growth in breakpoints and linear segments. Despite using the same
total number of neurons, deep neural networks can approximate far more
complex functions than shallow ones.

Another key advantage of deep networks is their ability to learn hierarchi-
cal features. Shallow networks often tend to “memorize” training data, leading
to poor generalization. In contrast, deep networks learn features at multiple
levels of abstraction. For example, in image recognition tasks, early hidden
layers tend to capture low-level features such as edges and corners of com-
mon objects, while later layers focus on higher-level patterns like shapes and
objects.

In summary, the number of breakpoints and linear segments acts as indi-
cators of model complexity, which increases exponentially with the depth of a
neural network. This exponential growth in expressivity makes deep networks
powerful enough to approximate functions of arbitrary complexity. Conse-
quently, making the network deeper often provides a more efficient way to
increase model capacity compared to simply widening the network.

Next, we will explore automatic differentiation, a mechanism embedded
in modern deep learning frameworks that enables fast and efficient gradient
computations, facilitating the training of large neural networks.

162 Deep Learning Generalization

5.2 Automatic Differentiation

The strong approximation capacity of a deep neural network makes it a highly
expressive and powerful model. However, achieving this capacity requires a
proper optimization procedure to identify the optimal weights for a given
network architecture. In Chapter 3, we explored the family of gradient descent
methods, which serve as the backbone of neural network optimization. This
general procedure involves iteratively computing the gradient of the model’s
cost function with respect to the model’s weights and subsequently applying
this gradient to update the weights.

Gradient-based optimization is one of the primary reasons for the suc-
cess of neural networks. Specifically, neural networks trained using stochastic
gradient descent (SGD) algorithms often achieve low empirical risk and gen-
eralize effectively to unseen test data. A distinguishing feature of SGD lies in
its stochasticity: the gradient is computed based on a single or a mini-batch
of examples, resulting in a noisy gradient compared to the full-batch gradient
derived from all training examples.

This stochasticity plays a critical role in enhancing generalization. Unlike
full gradient descent, which can drive the optimizer into sharp local minima,
SGD with smaller batch sizes facilitates movement toward flatter minima,
which tend to generalize better to test data. The noise introduced by stochas-
tic gradients enables the optimizer to escape sharp local optima and explore
regions of the parameter space associated with more robust solutions. Conse-
quently, the generalization capacity of neural networks depends not only on
the architecture and sample size but also on the specific optimization algo-
rithm and its configuration, such as the batch size and the learning rate.

Consider the trade-off between batch size and noise in gradient calcula-
tions. While smaller batch sizes introduce more noise into the optimization
process, they are computationally efficient and can potentially improve test
performance. On the other hand, larger batch sizes reduce noise but increase
the risk of overfitting to sharp local minima. This highlights the intricate
interplay between optimization dynamics and model generalization.

We will delve deeper into regularization techniques from the perspective of
optimization in a later chapter of the book series. For now, let us examine the
intricacies of gradient-based optimization, particularly in the context of neu-
ral networks with many parameters that require simultaneous updates during
each iteration. The modern way to handling these simultaneous updates is via
automatic differentiation, which is a computational mechanism embedded in
many modern deep learning frameworks. Automatic differentiation efficiently
computes gradients for arbitrary computational graphs, enabling the training
of complex models with minimal manual effort. By automating the differentia-
tion process, frameworks like PyTorch and TensorFlow reduce the complexity

Fundamentals of Deep Neural Networks 163

FIGURE 5.7
The model training process.

of deriving and implementing gradient calculations, making deep learning both
accessible and scalable.

In the next section, we will explore the mechanics of automatic differenti-
ation and its implementation in neural network optimization.

5.2.1 Gradient-based optimization

Let us revisit the model training process to better understand the role of
gradient-based optimization. As shown in Figure 5.7, the dataset is first di-
vided into a training set and a test set. The training set is used to develop
an optimal model, while the test set evaluates the generalization performance
of the trained model. Two critical functions underpin this process: the pre-
diction function and the cost function. The prediction function, denoted as
f(x(i);w), takes fixed input features x(i) and adjustable model weights w to
generate predictions. The cost function then aggregates these predictions and
compares them with the true targets to obtain a scalar value, Q(w), which
represents the discrepancy between predictions and target labels, often as an
average over all observations.

This scalar cost is then passed to an optimization procedure, such as gra-
dient descent, to update the weights w in a way that minimizes the cost. Once
training concludes, the optimal weights w∗ derived from the training set are
applied to the test set to generate test set predictions. Comparing these pre-
dictions with the ground truth gives us the final cost, such as mean squared
error (MSE). This test set cost serves as an approximation to the unknown
true risk and reflects how well the model generalizes to unseen data. The

164 Deep Learning Generalization

process then repeats over multiple epochs, iteratively minimizing the empiri-
cal risk until a given stopping criterion is met.

Note that the optimization process hinges on updating weights based
on the gradient of the cost function with respect to the current weights.
Specifically, gradient descent requires the computation of the gradient vec-
tor ∇wQ(wt), containing the partial derivatives of the cost function Q with
respect to each component of w at iteration t. For neural networks,w includes
all weights across layers.

As discussed earlier, the MLP can be expressed as a nested composite
function:

fL(x) = φ(bL +WLφ(bL−1 +WL−1φ(· · ·φ(b1 +W1x) · · ·))),

where φ represents the activation function, Wl the weight matrix, and bl

the bias vector at layer l. The final prediction fL(x) thus depends on all
intermediate weights, including those in the first layer,W1 and b1. To simplify,
let w denote all network weights, such that the prediction becomes a function
of these weights: fL(fL−1(· · · f1(w) · · ·)). For each l-th layer out of L layers,
the function fl is a differentiable mapping from R

pl−1 to R
pl .

Differentiability of fl is crucial for gradient-based optimization. The gradi-
ent vector ∇wQ(w) is computed using the chain rule to propagate gradients
through the layers, enabling updates to the weights w. If any intermediate
function fl is non-differentiable, gradient-based methods cannot proceed, thus
halting the optimization process.

5.2.2 The chain rule with partial derivatives

The chain rule, integral to computing partial derivatives for composite func-
tions, underpins gradient calculations in neural networks. Consider a compos-
ite function f(g(x)), where f operates on the output of g. To differentiate
f(g(x)), the chain rule says:

d

dx
[f(g(x))] = f ′(g(x))g′(x).

This calculation begins with the derivative of the outer function f with
respect to the inner function g(x), yielding f ′(g(x)). The derivative of g(x),
which is g′(x), is computed next, and the two derivatives are then multiplied.
This backward flow continues through all intermediate functions composing
the final expression of the nested function.

In neural networks, the MLP structure consists of stacked layers that form
a composite function. Using the chain rule, we calculate partial derivatives
for the network weights by propagating derivative calculations layer by layer,
starting from the final output and traversing backward to the input. This se-
quence mirrors the inverse of the forward propagation process, where inputs
are transformed through matrix multiplications and nonlinearities, yielding

Fundamentals of Deep Neural Networks 165

FIGURE 5.8
Schematic of forward propagation in a simple neural network with two hidden
layers, each having two nodes.

predictions. Backpropagation, the backward pass, calculates partial deriva-
tives for each weight by propagating the gradient of the cost function backward
through the network.

For example, consider a simple neural network with two hidden layers (two
nodes each), two input nodes, and one output node, as illustrated in Figure 5.8.
Let x denote input features, w the weights, and f the function that produces
outputs from inputs. The index notation captures the layer structure: xj is
the jth input feature, wj

i the jth weight in layer i, and f j
i the jth node output

in layer i.
The forward propagation process involves repeatedly applying matrix mul-

tiplications and activation functions. For example, in the first hidden layer,
the second node computes f2

1 = ReLU(x1w2
1 + x2w4

1). This learned feature
becomes an input to the next layer. In the final layer, the model predicts
f3 = ReLU(f1

2w
1
3 + f2

2w
2
3), and the cost Q(f3, y) is calculated.

Backward propagation begins by computing the gradient of the cost with
respect to the weights in the last layer, then iteratively moves backward,
calculating gradients for earlier weights using the chain rule. For example, to
compute ∂Q

∂w1
1
, one traces the derivative path from Q through all intermediate

layers to w1
1 , summing contributions from all paths, as shown by the dash-

dotted lines in Figure 5.9.
Let the prediction function for a neural network be represented as

fL(fL−1(· · · f1(w) · · ·)), where fL is the output function, and w denotes the

166 Deep Learning Generalization

FIGURE 5.9
Illustration of the backward propagation process.

initial weights. To compute ∂fL
∂w , we sequentially calculate intermediate deriva-

tives ∂fL
∂fL−1

, ∂fL−1

∂fL−2
, down to ∂f1

∂w , then multiply them:

∂fL
∂w

=
∂fL

∂fL−1
· ∂fL−1

∂fL−2
· · · · · ∂f2

∂f1
· ∂f1
∂w

.

This process, depicted in Figure 5.10, often relies on automatic differen-
tiation frameworks such as PyTorch. The forward pass generates predictions,
while the backward pass computes intermediate derivatives and multiplies
them to produce gradients, completing the optimization cycle.

5.2.3 Different modes of multiplication

The process of calculating gradients in multilayer neural networks involves
multiplying several matrices of partial derivatives across layers, with each ele-
ment representing a unique pair of nodes between consecutive layers. Efficient
computation of these gradients, especially for large networks, requires careful
planning of the multiplication order to minimize computational cost.

Consider the multiplication of the first two matrices: ∂f1
∂w and ∂f2

∂f1
. Let w

represent a p0-dimensional vector and f1 a p1-dimensional vector. The deriva-
tive ∂f1

∂w forms a p1 × p0 matrix, while ∂f2
∂f1

is a p2 × p1 matrix. Matrix multi-
plication requires that the inner dimensions match, which can then produce
a p2 × p0 matrix with a computational cost of p2p1p0 operations. This cost
indicates how long the multiplication will take.

Extending this process to the entire network, the sequence of matrix
multiplications determines the computational complexity. In forward mode

Fundamentals of Deep Neural Networks 167

FIGURE 5.10
Calculating the gradient of a multilayer neural network with respect to the
weights in the initial hidden layer.

multiplication, the matrices are multiplied sequentially from the input layer
to the output layer. For a network with L layers, this sequence can be repre-
sented as:

∂fL
∂w

=
∂fL

∂fL−1

(
∂fL−1

∂fL−2

(

· · ·
(
∂f3
∂f2

(
∂f2
∂f1

∂f1
∂w

))

· · ·
))

.

As shown in Figure 5.11, each successive multiplication with an outer layer
matrix changes the size of the resulting matrix and incurs an additional cal-

culation workload. For example, ∂f3
∂f2

(
∂f2
∂f1

∂f1
∂w

)

results in a p3 × p0 matrix,

incurring p3p2p0 operations. Summing these across all layers gives the total
computational cost for forward-mode multiplication, we have:

p0

L∑

l=2

plpl−1.

On the other hand, in a backward-mode multiplication, matrices are mul-
tiplied in reverse order, starting from the output layer and proceeding toward
the input layer. The sequence is expressed as:

∂fL
∂w

=

(

· · ·
(((

∂fL
∂fL−1

∂fL−1

∂fL−2

)
∂fL−2

∂fL−3

)

· · · ∂f2
∂f1

)
∂f1
∂w

)

.

As shown in Figure 5.12, the computational cost for backward-mode mul-
tiplication is:

pL

L−1∑

l=1

plpl−1.

168 Deep Learning Generalization

FIGURE 5.11
Illustrating the forward-mode multiplication process and its computational
cost.

FIGURE 5.12
Illustrating the backward-mode multiplication process and its computational
cost.

Comparing these two modes, the key difference is that the forward mode
mainly depends on p0, the dimension of the input data, while the backward
mode mainly depends on pL, the output dimension. Since the cost function in
most models is a scalar (pL = 1), backward-mode multiplication is generally

Fundamentals of Deep Neural Networks 169

more efficient, particularly for high-dimensional inputs like image data, where
p0 can reach hundreds or thousands.

However, despite its computational efficiency, backward-mode multiplica-
tion, or backpropagation, requires more memory to store intermediate deriva-
tives. In contrast, the forward mode calculates the layer-wise gradients during
the forward pass and discards them afterward, reducing memory usage. This
trade-off is critical when designing automatic differentiation frameworks such
as PyTorch, which offers efficient implementation of backpropagation when
training large neural networks.

In the next section, we will dive into the implementation details of train-
ing a simple convolutional neural network (CNN) model using the Modified
National Institute of Standards and Technology (MNIST) dataset.

5.3 Training a CNN on MNIST

To understand the training process in practice, we explore the implementation
of an image classifier using the MNIST dataset. The MNIST dataset, short
for the Modified National Institute of Standards and Technology (MNIST)
database, is one of the most widely used datasets for prototyping and bench-
marking machine-learning and deep learning models. It contains grayscale
images of handwritten digits, each normalized to a standard format. Specif-
ically, it comprises 60,000 training images and 10,000 testing images, each
representing a single digit from 0 to 9. These images are preprocessed through
normalization and center cropping for consistency, ensuring that variations in
input do not adversely affect the training process. Accessing the dataset in
PyTorch is straightforward, as it is readily available via the torchvi-
sion.datasets module, eliminating the need for manual downloading.

PyTorch, a core deep learning framework, provides the torch package,
which includes the foundational classes and methods for building and training
neural networks. This package handles the implementation of tensor oper-
ations, automatic differentiation, and the various utilities required for opti-
mization algorithms. Beyond this core functionality, the torchvision package
serves as a specialized extension for computer vision tasks. It offers a suite of
tools, including access to popular datasets like MNIST, prebuilt model archi-
tectures, and standard image transformation pipelines. These utilities greatly
simplify and standardize image preprocessing, model initialization, and bench-
marking. Meanwhile, torchtext caters to natural language processing (NLP)
tasks, offering tools for handling textual data and preprocessing pipelines for
tokenization, embedding, and other NLP-specific transformations.

To train a simple convolutional neural network (CNN) using the MNIST
dataset, we begin with data loading and preprocessing. PyTorch’s datasets
and DataLoader classes, available within the torchvision package, can be used
to handle data efficiently. These utilities allow for consistent handling of data

170 Deep Learning Generalization

pipelines, from accessing the dataset to applying transformations like normal-
ization and efficiently batching the data during training.

Once the data are prepared, the next step involves defining the model
architecture. A CNN model is constructed with layers tailored for extracting
spatial and hierarchical features from the images. The design typically includes
convolutional layers, pooling layers, and fully connected layers, combined with
activation functions such as ReLU to introduce nonlinearity.

After defining the architecture, we specify a cost function and an opti-
mization algorithm. The cost function measures the discrepancy between the
predicted labels and the ground-truth labels. Common choices for classifica-
tion tasks include the cross-entropy loss (CEL), which computes the negative
log-likelihood of the true class. The optimization algorithm, such as SGD or
Adam, is responsible for adjusting the model’s parameters to minimize the
cost function, leveraging the gradients computed via backpropagation.

Finally, the training process begins. The model iterates over the training
data in batches, performing forward propagation to compute predictions, cal-
culating the cost, and using backward propagation to update the weights. This
process repeats for a specified number of epochs, gradually refining the model
parameters. Once training is complete, the model is evaluated on the test set,
where its predictive performance is measured using predictive accuracy or an-
other suitable metric. This step assesses the model’s ability to generalize to
unseen data.

The utility of PyTorch and its subpackages, torchvision and torchtext, lies
in their ability to streamline this workflow. By providing prebuilt tools and
abstractions for data handling, model design, and optimization, these packages
significantly reduce the effort required to implement and train deep learning
models, allowing researchers to focus on fine-tuning and innovation rather
than implementation details.

The following sections show the full training procedure.

5.3.1 Downloading and loading the MNIST dataset

The process of working with the MNIST dataset in PyTorch begins with
downloading the dataset and preparing it for training and testing. PyTorch’s
torchvision library provides the datasets submodule, which makes accessing
popular datasets like MNIST straightforward. Recall that the dataset consists
of grayscale images of handwritten digits, with corresponding labels repre-
senting the digit each image depicts. It includes 60,000 training images and
10,000 testing images.

The following code snippet demonstrates how to use the datasets. MNIST
class to download the dataset into a local directory called data. The dataset is
transformed into PyTorch tensors using the ToTensor function, which converts
the image data into a multidimensional tensor. This transformation scales the
pixel values from their original range of [0, 255] to [0.0, 1.0] for normalization
purposes, making the data more suitable for neural network training.

Fundamentals of Deep Neural Networks 171

1 import torch

2 import matplotlib .pyplot as plt

3 from torchvision import datasets

4 from torchvision .transforms import ToTensor

5

6 train_data = datasets .MNIST (

7 root=’data ’,

8 train =True ,

9 transform =ToTensor (),

10 download =True ,

11)

12

13 test_data = datasets .MNIST(

14 root=’data ’,

15 train =False ,

16 transform =ToTensor (),

17)

Listing 5.6
Downloading MNIST Dataset.

Once the dataset is downloaded, we can print the object’s train data and
test data to examine their attributes. The datasets.MNIST object provides
metadata such as the number of samples, the root location where the data are
stored, and any applied transformations.

1 >>> print (train_data)

2 Dataset MNIST

3 Number of datapoints : 60000

4 Root location : data

5 Split : Train

6 StandardTransform

7 Transform : ToTensor ()

8

9 >>> print (test_data)

10 Dataset MNIST

11 Number of datapoints : 10000

12 Root location : data

13 Split : Test

14 StandardTransform

15 Transform : ToTensor ()

Listing 5.7
Examining Data Attributes.

Each image in the training dataset has a size of 28 × 28 pixels, and the
corresponding labels are stored in the targets attribute. We can confirm this
using the following commands:

1 >>> print (train_data .data.size())

2 >>> print (train_data .targets .size())

3 torch.Size ([60000 , 28, 28])

4 torch.Size ([60000])

Listing 5.8
Checking Data Size.

172 Deep Learning Generalization

The output indicates that the dataset contains 60,000 training images, each
represented as a 28 × 28 tensor. For grayscale images, an additional channel
dimension (depth) is omitted, as each pixel is a single intensity value.

To better understand the dataset, we can visualize a random selection of
25 images from the training set. Each image is plotted on a 5× 5 grid.

1 figure = plt .figure (figsize =(10, 8))

2 cols , rows = 5, 5

3 # Loop over 25 places to plot the images

4 for i in range (1, cols * rows + 1):

5 # Generate a random index to select an image

6 # The item function converts the Tensor object into a scalar

value

7 sample_idx = torch.randint (len (train_data), size =(1,)).item()

8 # Extract the image data and target label

9 img , label = train_data [sample_idx]

10 figure .add_subplot (rows , cols , i)

11 plt.title(label)

12 plt.axis("off ")

13 # Squeeze the image to convert the image shape from [1 ,28 ,28]

to [28 ,28]

14 plt.imshow (img .squeeze (), cmap="gray")

15 plt .show()

Listing 5.9
Visualizing MNIST Dataset.

The resulting graph shows 25 randomly selected images, where each image
consists of 28 × 28 = 784 pixels. These pixels form the features of the image
that will be used to train the model. The output of this visualization is shown
in Figure 5.13.

The next step involves preparing the dataset for training using PyTorch’s
DataLoader class, which facilitates efficient data handling. The DataLoader
takes care of batching, shuffling, and parallel processing of the dataset, en-
abling streamlined training workflows.

1 from torch.utils.data import DataLoader

2

3 loaders = {

4 ’train ’: torch .utils .data. DataLoader (

5 # data source to be loaded

6 train_data ,

7 # the number of training samples used in one iteration

8 batch_size =100,

9 # samples are shuffled and loaded in batches

10 shuffle =True

11),

12 ’test’: torch.utils.data.DataLoader (

13 test_data ,

14 batch_size =100,

15 shuffle =True

16)

17 }

Listing 5.10
Defining Dataloader.

Fundamentals of Deep Neural Networks 173

FIGURE 5.13
Visualizing 25 random MNIST digits. Each digit is a grayscale image that
consists of 28 × 28 = 784 pixels.

Here, the training and test datasets are loaded in batches of size 100, with
the training data shuffled to ensure randomness during each epoch. The loaded
data can be inspected by iterating over the DataLoader.

1 >>> for X, y in loaders [’train ’]:

2 >>> print ("Shape of X [batch_size , channel , height , width]: ",

X.shape)

3 >>> print ("Shape of y: ", y.shape)

4 >>> break

5 Shape of X [batch_size , channel , height , width]: torch.Size

([100 , 1, 28, 28])

6 Shape of y: torch .Size ([100])

Listing 5.11
Inspecting Data.

The output confirms that the images are batched with dimensions
[100, 1, 28, 28], where 100 is the batch size, 1 represents the grayscale channel,
and 28× 28 is the spatial resolution of each image. The labels are stored in a
tensor of size [100] corresponding to the 100 images in each batch.

This data preparation pipeline ensures that the dataset is ready for train-
ing, allowing us to focus on defining the model architecture, loss function, and
optimization procedure in subsequent steps.

174 Deep Learning Generalization

5.3.2 Defining the prediction function

In machine learning, the prediction function serves as the computational back-
bone of any model. It takes input data, processes it through a series of op-
erations involving model parameters (e.g., weights and biases), and outputs
predictions. These operations typically involve matrix-vector multiplication to
extract features from input data and apply nonlinear transformations such as
activation functions to capture complex patterns. A well-defined prediction
function achieves two essential goals: initializing model parameters and spec-
ifying the architecture of the model, that is, how the data interact with the
parameters.

In simpler machine-learning problems, these two operations can often be
combined into a single function. For instance, in a basic linear regression
model, the prediction function not only defines the weights but also speci-
fies the interaction between the weights and the input data through a dot
product. However, as the complexity of the problem grows—whether due to
larger datasets, more sophisticated architectures, or advanced optimization
techniques—modularizing the prediction function becomes critical. By sepa-
rating the definition of model parameters from the architectural blueprint, we
achieve greater flexibility, scalability, and maintainability in the codebase.

A common approach in deep learning frameworks, such as PyTorch, is
to encapsulate the entire model architecture and its parameters in a class.
This class serves as a blueprint for creating instances of the model, with two
primary components:

• init Function: This is the constructor of the class, responsible for defin-
ing and initializing the essential building blocks of the model. These com-
ponents include convolutional layers, activation functions, pooling layers,
and fully connected layers. In neural networks, these elements correspond
to trainable parameters (e.g., weights and biases) that will be optimized
during training. Think of this step as assembling the “raw materials” or
“parts” needed to build the model.

• forward Function: This function defines the flow of data through the net-
work. It specifies how the input interacts with the initialized components,
such as passing through convolutional layers, applying activation func-
tions, and eventually producing the output. The forward function acts as
an instruction manual for assembling the model’s components into a com-
putational pipeline. In PyTorch, when an instance of the class is called,
the forward function is automatically invoked, simplifying the process of
defining the data flow.

This separation of initialization and data flow provides better clarity for
our understanding of the overall training procedure. For example, in PyTorch,
the model can be instantiated and immediately called with input data, trig-
gering the forward pass implicitly. This design pattern promotes modularity
and aligns with object-oriented programming principles.

Fundamentals of Deep Neural Networks 175

FIGURE 5.14
Illustrating the convolution workflow. Here we define a 3× 3 kernel that holds
a total of 9 weights. The kernel will convolve with different patches of the
same size in the input image data.

CNNs are particularly suited for processing image data because they ex-
ploit spatial hierarchies. Unlike fully connected layers, which treat all input
features equally, convolutional layers focus on local patterns by applying small,
learnable filters (or kernels) to regions of the input. Each kernel slides across
the input, performing an element-wise multiplication with the corresponding
patch of the input matrix, followed by summation. The result of this operation
is a single scalar value that forms part of the feature map.

Figure 5.14 illustrates this process. Consider a 3 × 3 kernel interacting
with a 3 × 3 patch of an image. Each cell in the patch contains a pixel value
(e.g., in the range [0, 255] for grayscale images). The kernel values, which
are the trainable parameters of the layer, are multiplied element-wise with
the pixel values, and the products are summed to produce a single scalar
output. The kernel then moves or slides to the adjacent window. This process
is repeated across the entire input image, effectively “scanning” the input to
detect patterns such as edges or textures.

A convolution operation can be characterized by the following properties:

• Kernel Size: Determines the dimensions of the filter. For example, a 5× 5
kernel captures broader patterns than a 3× 3 kernel.

• Stride: Specifies the step size for sliding the kernel. A stride of 1 means
the kernel moves one pixel at a time, whereas a stride of 2 skips every
other pixel, reducing the spatial dimensions of the resulting output.

• Padding: Adds zeros around the input image to preserve its dimensions
after convolution, ensuring that edge information is not lost.

176 Deep Learning Generalization

In addition to convolution, CNNs often include activation functions (e.g.,
ReLU) to introduce nonlinearity and pooling layers to reduce the spatial di-
mensions of feature maps. Pooling simplifies the representation, focusing on
the most salient features. For example, max pooling selects the maximum
value in a region, while average pooling computes the mean.

This CNN architecture can be encapsulated in a PyTorch class as follows:

1 import torch .nn as nn

2

3 class CNN (nn.Module):

4 # Specify the components to be created automatically upon

instantiation

5 def __init__ (self):

6 super(CNN , self).__init__ ()

7 # The first convolutional block

8 self.conv1 = nn. Sequential (

9 nn.Conv2d (

10 in_channels =1, out_channels=16, kernel_size =5,

stride =1, padding =2

11),

12 nn.ReLU(),

13 nn.MaxPool2d (kernel_size =2) ,

14)

15 # The second convolutional block

16 self.conv2 = nn. Sequential (

17 nn.Conv2d (16, 32, 5, 1, 2),

18 nn.ReLU(),

19 nn.MaxPool2d (2) ,

20)

21 # The final fully connected layer which outputs 10

classes

22 self.out = nn.Linear (32 * 7 * 7, 10)

23

24 # Specify the flow of information

25 def forward (self , x):

26 x = self.conv1(x)

27 x = self.conv2(x)

28 # Flatten the output to shape (batch_size , 32 * 7 * 7)

29 x = x.view(x.size (0) , -1)

30 output = self.out(x)

31 return output

Listing 5.12
Defining CNN.

This architecture features the following components:

• Convolutional Blocks:

– The first block (conv1) applies 16 5 × 5 kernels with a stride of 1 and
padding of 2, followed by ReLU activation and max pooling.

– The second block (conv2) increases the depth to 32 kernels.

• Fully Connected Layer:

Fundamentals of Deep Neural Networks 177

– The final layer (self.out) maps the flattened feature map to 10 outputs,
corresponding to the 10-digit classes.

• Data Flow in the forward Function:

– Input data flows sequentially through the two convolutional blocks.

– The multidimensional feature map is flattened into a vector using the
view() function before being passed to the fully connected layer.

• Parameter Details:

– in channels specify the input depth (1 for grayscale images).

– out channels specify the number of filters, determining the depth of
the feature map.

– kernel size controls the size of the convolutional filter.

Here, the raw outputs of the network (logits) are transformed into probabilities
using the softmax function:

S(ŷk) =
eŷk

∑C
i=1 e

ŷi

,

where C is the number of classes. This transformation ensures that the outputs
are normalized to sum to 1, facilitating probabilistic interpretation. For ex-
ample, logits [1, 2, 3] are transformed into probabilities [0.09, 0.24, 0.67]. This
monotonic transformation preserves the ranking of the logits, ensuring that
the class with the highest probability remains the predicted class.

The softmax function can be implemented as follows:

1 import numpy as np

2 def softmax (x):

3 return np.exp(x) / np.sum (np.exp(x), axis =0)

4

5 >>> test = [1,2,3]

6 >>> transformed_test = softmax (test)

7 >>> print (’softmax output :’, transformed_test)

8 softmax output : [0.09003057 0.24472847 0.66524096]

Listing 5.13
Implementing Softmax Function.

PyTorch’s cost functions, such as CEL, automatically apply the softmax
transformation, so it is unnecessary to implement it explicitly during training.

Figure 5.15 shows the process of transforming the original output into
probabilities using the softmax function. The transformed outputs are now
bounded and sum to one, thus facilitating interpretation. The relative ranking
of the outputs also remains the same, so the final prediction is still the third
class in this example.

178 Deep Learning Generalization

FIGURE 5.15
Transforming the original output into probabilities using the softmax function.

The model can also be instantiated and moved to a GPU for efficient
training:

1 device = "cuda" if torch .cuda. is_available() else "cpu "

2 model = CNN ().to(device)

3 print (model)

4 # Output

5 # Using cuda device

6 # CNN (

7 # (conv1): Sequential (

8 # (0) : Conv2d (1, 16, kernel_size =(5, 5), stride =(1, 1),

padding =(2, 2))

9 # (1) : ReLU ()

10 # (2) : MaxPool2d (kernel_size =2, stride =2, padding =0, dilation =1,

ceil_mode =False)

11 #)

12 # (conv2): Sequential (

13 # (0) : Conv2d (16, 32, kernel_size =(5, 5), stride =(1, 1),

padding =(2, 2))

14 # (1) : ReLU()

15 # (2) : MaxPool2d (kernel_size =2, stride =2, padding =0, dilation

=1, ceil_mode =False)

16 #)

17 # (out): Linear (in_features =1568 , out_features=10, bias=True)

18 #)

Listing 5.14
Moving to GPU.

When the neural network architecture starts to scale up and become com-
plex, it is often helpful to print out the architecture for better clarification
of its composition. In the code snippet below, we resort to the torchsummary
package to ease the visualization task by passing in the size of an input en-
try. The output shows the model architecture from top to bottom, with each
layer sequentially suffixed by an integer. The output shape and number of

Fundamentals of Deep Neural Networks 179

parameters in each layer are also provided, which shows that there are a to-
tal of 28,938 (trainable) parameters used in the model. Note that we do not
have any non-trainable parameters; this often relates to the level of model
fine-tuning when performing transfer learning.

1 from torchsummary import summary

2 summary (model , input_size =(1, 28, 28))

3 # Output

4 --

5 Layer (type) Output Shape Param #

6 ==

7 Conv2d -1 [-1, 16, 28, 28] 416

8 ReLU -2 [-1, 16, 28, 28] 0

9 MaxPool2d -3 [-1, 16, 14, 14] 0

10 Conv2d -4 [-1, 32, 14, 14] 12 ,832

11 ReLU -5 [-1, 32, 14, 14] 0

12 MaxPool2d -6 [-1, 32, 7, 7] 0

13 Linear -7 [-1, 10] 15 ,690

14 ==

15 Total params : 28 ,938

16 Trainable params : 28 ,938

17 Non -trainable params : 0

18 --

19 Input size (MB): 0.00

20 Forward /backward pass size (MB): 0.32

21 Params size (MB): 0.11

22 Estimated Total Size (MB): 0.44

23 --

Listing 5.15
Model Summary.

5.3.3 Defining the cost function

In machine learning, the cost function measures how well a model’s predic-
tions align with the actual target labels. For regression problems, the MSE is
a common choice. However, in classification tasks, such as predicting hand-
written digits from the MNIST dataset, CEL is often used. CEL is designed to
quantify the discrepancy between predicted probabilities and one-hot-encoded
target labels, making it particularly effective for multi-class classification.

For the ith observation xi, let the model output a vector of probabilities
pi = [pi,1, pi,2, . . . , pi,C], where C is the total number of classes. Each pi,k
represents the predicted probability of the ith observation belonging to class
k. The CEL for a single observation is defined as:

Qi(w) = −
C∑

k=1

yi,k log(pi,k),

where yi,k = 1 if the true label for observation i belongs to class k, and yi,k = 0
otherwise. This formula evaluates the model’s performance across all C classes

180 Deep Learning Generalization

by computing a weighted sum of the logarithm of predicted probabilities. Only
the term corresponding to the correct class contributes to the loss due to the
one-hot encoding nature of the target label.

Intuitively, we would expect the predicted probability for the correct class
to be as close to 1 as possible and for the incorrect classes to approach 0.
In other words, the loss should increase as the predicted probabilities deviate
from the true class label. To clarify, consider the following four scenarios for
the ith observation and the kth class:

• Correct Class Prediction (High Confidence): When the target label be-
longs to the kth class (i.e., yi,k = 1) and the predicted probability for the
kth class is very high (i.e., pi,k ≈ 1), the cost should be low. This aligns
with the model making a confident and correct prediction.

• Correct Class Prediction (Low Confidence): When the target label belongs
to the kth class (i.e., yi,k = 1) but the predicted probability for the kth

class is very low (i.e., pi,k ≈ 0), the cost should be high. This penalizes
the model for failing to correctly identify the class.

• Incorrect Class Prediction (High Confidence): When the target label does
not belong to the kth class (i.e., yi,k = 0) but the predicted probability for
the kth class is very high (i.e., pi,k ≈ 1), the cost should also be high. This
scenario penalizes the model for assigning high confidence to an incorrect
class.

• Incorrect Class Prediction (Low Confidence): When the target label does
not belong to the kth class (i.e., yi,k = 0) and the predicted probability
for the kth class is very low (i.e., pi,k ≈ 0), the cost should be low. This
reflects the model correctly ignoring irrelevant classes.

These scenarios illustrate how CEL operates to reward accurate predictions
with high confidence while penalizing incorrect or uncertain predictions. By
focusing only on the probabilities corresponding to the true class, the loss
function can encode and reflect this intuitive behavior.

The CEL for the entire dataset is computed by summing over all N ob-
servations:

Q(w) = −
N∑

i=1

C∑

k=1

yi,k log(pi,k).

This formula aggregates the per-observation loss to provide a single scalar
value representing the model’s goodness of fit across the dataset. Figure 5.16
summarizes the above discussion on the CEL.

Note that to compute CEL, the target labels must be one-hot encoded. For
example, if the true label of an image corresponds to the digit 8, the one-hot
encoded vector would be:

yi = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0].

Fundamentals of Deep Neural Networks 181

FIGURE 5.16
CEL and its intuition.

Here, the eighth element (corresponding to class 8) is set to 1, while all
other elements are set to 0.

The following function implements CEL. It takes the one-hot encoded
target vector and the predicted probability vector as inputs.

1 import numpy as np

2

3 def cross_entropy(actual , predicted):

4 EPS = 1e-15

5 predicted = np.clip(predicted , EPS , 1 - EPS) # Cap

probabilities to avoid log (0)

6 loss = -np.sum (actual * np.log(predicted))

7 return loss

Listing 5.16
Implementing CEL.

Let us consider a three-class classification problem. The true label is the
first class (one-hot encoded as [1, 0, 0]). We evaluate two sets of predictions:
one with high confidence for the correct class and one with low confidence.

1 >>> y = np.array ([1, 0, 0])

2 >>> pred_good = np.array ([0.8 , 0.1, 0.1])

3 >>> pred_bad = np.array ([0.1 , 0.6, 0.3])

4 >>> loss_good = cross_entropy(y, pred_good)

5 >>> loss_bad = cross_entropy(y, pred_bad)

6 >>> print (’The good prediction loss: {:.4f}’.format (loss_good))

7 >>> print (’The bad prediction loss: {:.4f}’.format (loss_bad))

8 The good prediction loss: 0.2231

9 The bad prediction loss: 2.3026

Listing 5.17
Calculating CEL.

182 Deep Learning Generalization

As expected, the loss is significantly higher for the poor prediction.
PyTorch simplifies the calculation of CEL by automating one-hot en-

coding and applying the softmax transformation internally. The torch.nn.
CrossEntropyLoss function can handle these steps, as shown in the follow-
ing code snippet:

1 import torch

2 import torch .nn as nn

3

4 cost_func = nn. CrossEntropyLoss() # Initialize the CEL function

5 y = torch .tensor ([0]) # True label as a class index

6 pred_good = torch.tensor ([[2, 0.8, 0.5]]) # Predicted logits

7 pred_bad = torch.tensor ([[1, 6, 0.2]])

8

9 loss_good = cost_func (pred_good , y)

10 loss_bad = cost_func (pred_bad , y)

11

12 print (’The good prediction loss: {:.4f}’.format (loss_good .item ())

)

13 print (’The bad prediction loss: {:.4f}’.format (loss_bad .item()))

14 The good prediction loss: 0.4216

15 The bad prediction loss: 5.0097

Listing 5.18
Generating Functional Evaluations.

In this example, the higher loss for the poor prediction aligns with our
expectations. CEL thus provides a measure of the model’s fit to the training
data. Although a lower loss indicates a better fit to the training data, we still
need to be cautious about potential overfit. To mitigate this, a regularization
term can be added to the cost function, penalizing overly complex models.

5.3.4 Defining the optimization procedure

As mentioned earlier, to update the model parameters, we can employ op-
timization algorithms, such as SGD and its variants, provided by PyTorch.
These optimizers are particularly advantageous because they scale efficiently,
enabling the optimization of models with millions of parameters or more. In
its basic form, the SGD optimizer requires two key inputs: the model param-
eters, denoted as w, and the learning rate η, which controls the step size in
the parameter space. Once an optimizer is instantiated, we invoke its step()
method to adjust w after computing the gradients ∇wJ(w) using the back-
ward() method, where J(w) represents the cost function.

The optimization process is inherently iterative. At each step t, the pre-
diction function f(xi;w

(t)) generates outputs for a given input xi based on
the current model parameters w(t). The cost function J(w) then computes
a loss, typically as a function of the predicted values and the ground truth

Fundamentals of Deep Neural Networks 183

targets yi. For example, in regression, J(w) could be the MSE:

J(w) =
1

n

n∑

i=1

(f(xi;w)− yi)
2
,

where n is the number of training samples. The optimizer updates w by com-
puting ∇wJ(w), the gradient of the cost with respect to the weights, and
performing a gradient descent step:

w(t+1) = w(t) − η∇wJ(w(t)).

This process iterates until convergence, for example, when either the
weights w or the cost J(w) exhibit negligible changes over subsequent it-
erations. We can also refer to the convergence plot of the loss function to
detect if the optimization procedure has reached a stable solution.

The following Python code snippet shows how to set up the optimization
procedure using PyTorch’s SGD optimizer. Here, the model parameters w are
updated iteratively with a fixed learning rate η = 0.01:

1 from torch import optim

2 optimizer = optim.SGD (model .parameters (), lr =0.01)

Listing 5.19
Initializing SGD.

5.3.5 Updating model weights

We now consolidate the components introduced earlier into the full training
loop. Using the predefined model architecture and a data loader object, the
training function implements the SGD optimization algorithm, iterating over
the entire training dataset. The training loop updates the model parametersw
batch by batch while tracking the evolution of the cost function. This process
is repeated over a fixed number of epochs to iteratively refine the weights and
reduce the predictive loss.

1 def train (model , loaders , verbose =True):

2 # Sets the model to training mode

3 model .train ()

4 # Extract the total number of images

5 total_img = len (loaders [’train ’]. dataset)

6

7 # Iterate through batches

8 for batch , (X, y) in enumerate (loaders [’train ’]):

9 # Transfer data to the GPU

10 X, y = X.to(device), y.to(device)

11 # Compute predictions $f(\ mathbf {x}^{(i)}; \mathbf {w})$

12 pred = model(X)

13 # Compute cost $\mathcal {L}(f(\mathbf {x}^{(i)}; \mathbf {w

}), y^{(i)})$

14 cost = cost_func (pred , y)

184 Deep Learning Generalization

15 # Clear gradients

16 optimizer .zero_grad ()

17 # Perform backpropagation to compute $\frac{\ partial \

mathcal {L}}{\ partial \mathbf {w}}$

18 cost.backward ()

19 # Update $\mathbf {w}$ using gradient descent

20 optimizer .step()

21

22 # Log cost at intervals

23 if verbose :

24 if batch % 100 == 0:

25 loss , current_img_idx = cost.item(), batch * len (

X)

26 print (f"cost: {cost:>7f} [{ current_img_idx:>5d

}/{ total_img :>5d}]")

Listing 5.20
Defining the Training Procedure.

In the function, the model prediction f(xi;w) is computed for a batch of
training samples X. The predictive cost is evaluated using a predefined cost
function, which quantifies the discrepancy between the predictions and the
ground truth labels y. The backward() method calculates the gradients ∂L

∂w ,
which are then used to update the model parameters w via optimizer.step().

To observe how the cost evolves, we can execute the training function for
one epoch:

1 >>> train (model , loaders)

2 cost: 2.305853 [0/60000]

3 cost: 2.070413 [10000/60000]

4 cost: 0.855676 [20000/60000]

5 cost: 0.454673 [30000/60000]

6 cost: 0.475409 [40000/60000]

7 cost: 0.320870 [50000/60000]

Listing 5.21
Evolution of Cost.

The decreasing cost values over batches demonstrate that the model is
improving its predictions as training progresses.

Besides, we also define a test function to evaluate the model’s performance
on unseen data. This function computes predictions for test samples and com-
pares them with the ground truth labels to determine the model’s accuracy.
To ensure efficiency, gradient calculations are disabled during evaluation using
the torch.no grad() context:

1 def test(model , loaders , verbose =True):

2 # Control the behavior of certain layers by specifying the

evaluation mode

3 model .eval ()

4 # Extract the total number of images to in the test set

5 total_img = len (loaders [’test’].dataset)

6 correct = 0

7 # Disable gradient calculation

Fundamentals of Deep Neural Networks 185

8 with torch.no_grad ():

9 for X, y in loaders [’test’]:

10 X, y = X.to(device), y.to(device)

11 pred = model (X)

12 correct += (pred.argmax (1) == y).type(torch.float).

sum ().item()

13 # Add the correct prediction for each batch

14 correct /= total_img

15 if verbose :

16 print(f"Test accuracy : {correct :>0.3 f}")

17

18 Using this test function , the performance of the model trained

with one epoch is evaluated :

19

20 >>> test(model , loaders)

21 Test accuracy : 0.911

Listing 5.22
Defining Test Function.

With just one epoch, the model achieves a test accuracy of 91.1%, indicat-
ing a reasonable initial fit to the data. To improve performance, we can train
the model for multiple epochs, as demonstrated below:

1 >>> num_epochs = 10

2 >>> for t in range (num_epochs):

3 >>> print(f"Epoch {t+1}\n------------------------------- ")

4 >>> train(model , loaders , verbose =False)

5 >>> test(model , loaders)

6 >>> print ("Done!")

7 Epoch 1

8 -------------------------------

9 Test accuracy : 0.911

10 Epoch 2

11 -------------------------------

12 Test accuracy : 0.943

13 ...

14 Epoch 10

15 -------------------------------

16 Test accuracy : 0.980

17 Done!

Listing 5.23
Training for More Epochs.

This iterative training procedure results in progressively higher accuracy.
After ten epochs, the accuracy reaches 98%, illustrating the benefit of extended
training in optimizing the model’s performance.

Before we wrap up, let me circle back to the topic of generalization and
discuss a few more points about this holy grail.

186 Deep Learning Generalization

5.4 More on Generalization

Earlier, we mentioned that SGD is widely used in deep neural networks due
to its strong generalization performance. Interestingly, we did not explicitly
apply any regularization during the training process. Despite this, SGD still
introduces an implicit regularization effect. This effect, combined with the
inherent flexibility of neural network architectures and structured input data
(e.g., image data), helps reduce test error even when training error approaches
zero and the model training continues. This phenomenon can lead to a “double
descent” behavior in the test loss curve, as explored by [15].

To analyze this property more closely, we define a simple neural network
with one fully connected hidden layer. This minimal architecture helps isolate
the impact of model complexity, which we can adjust by varying the number
of nodes in the hidden layer. Below is the definition of the model class. The
nn.Linear() function is used to define the hidden layer and the output layer.
The input size for the hidden layer is set to 1 × 28 × 28, and the output size
corresponds to the ten classes in the MNIST dataset. The size of the hidden
layer, num nodes, is a hyperparameter and is used to allow experimentation
with varying model complexities. The forward() function then flattens the
input data before passing it through the fully connected layer.

1 import torch .nn as nn

2 import torch .nn.functional as F

3 class SimpleNN (nn.Module):

4 # Model initialization codes

5 def __init__ (self , num_nodes , num_classes =10):

6 super(SimpleNN , self). __init__ ()

7 # The single fully connected layer

8 self.fc = nn.Linear (1 * 28 * 28, num_nodes)

9 # The final fully connected layer which outputs 10

classes

10 self.out = nn.Linear (num_nodes , num_classes)

11 # Mode architecture codes

12 def forward (self , x):

13 # Flatten all dimensions except for the batch size

14 x = x.view(x.shape [0], -1)

15 x = F.relu(self.fc(x))

16 output = self.out(x)

17 return output

Listing 5.24
Defining a Simple Neural Network.

Next, we need a function to tell us how well the model performs on the
training and test sets. These also give us an indication of the model’s gener-
alization performance when we vary the hidden layer’s size. In the following
code listing, we define a function called check accuracy() to calculate the pre-
dictive accuracy for the entire training or test set, depending on the value of
the input argument. The codes largely follow the same structure as the test()

Fundamentals of Deep Neural Networks 187

function in the previous example, except that we use the input image loader
based on a user-specified parameter. This saves us from writing two similar
functions for both training and test sets.

1 def check_accuracy(model , loaders , verbose =True , type="train"):

2 # Set the model to evaluation mode

3 model .eval ()

4

5 # Extract the total number of images

6 total_img = len (loaders [type]. dataset)

7 correct = 0

8

9 # Disable gradient calculation as backpropagation is not

needed

10 with torch.no_grad ():

11 for X, y in loaders [type]:

12 X, y = X.to(device), y.to(device)

13

14 # Compute model predictions

15 pred = model (X)

16

17 # Add the correct prediction for each batch

18 correct += (pred.argmax (1) == y).type(torch.float).

sum ().item()

19

20 # Calculate accuracy as the proportion of correct predictions

21 correct /= total_img

22 if verbose :

23 print(f"{type} accuracy : {correct :>0.3 f}")

24 return correct

Listing 5.25
Checking Model Accuracy.

We are now ready to assess the impact of model complexity on the predic-
tive accuracy for both the training set and the test set. In the following code
listing, we start with two nodes in the hidden layer and gradually double the
size until 4096. The reason for such an extensive range is to see how the model
performs as the model complexity increases even after passing the interpolat-
ing threshold. We also set a total training budget of 500 epochs in num epochs
to ensure that the training procedure can reach convergence, that is, the model
parameters do not change much. Upon exhausting the training budget, we
record the final prediction accuracy for the training set in final train acc and
the test set in final test acc. Since running the full codes takes quite some
time, we store these two variables in text files via the pickle package so that
we do not need to start from scratch if the running gets disrupted.

1 import pickle

2 from torch import optim

3

4 # Set the device to GPU if available , otherwise use CPU

5 device = "cuda" if torch .cuda. is_available() else "cpu "

6

7 # Set the total number of epochs for training

188 Deep Learning Generalization

8 num_epochs = 500

9

10 # Initialize lists to store final training and test accuracies

11 final_train_acc = []

12 final_test_acc = []

13

14 # Define the range of nodes in the hidden layer for

experimentation

15 num_nodes = [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048,

4096]

16

17 for n_node in num_nodes :

18 # Print the current number of nodes being evaluated

19 print (f"------NODE: {n_node }-----")

20

21 # Initialize the model with the specified number of nodes

22 model = SimpleNN (num_nodes =n_node)

23

24 # Define the cost function

25 cost_func = nn.CrossEntropyLoss ()

26

27 # Define the optimizer using SGD

28 optimizer = optim .SGD(model.parameters (), lr =0.01)

29

30 # Start the training process

31 for t in range (num_epochs):

32 # Print the epoch number every 10 epochs

33 if t % 10 == 0:

34 print (f"Epoch {t}")

35

36 # Train the model on the current dataset

37 train(model , loaders , verbose =False)

38

39 # Save the final training accuracy

40 final_train_acc.append (check_accuracy(model , loaders , type="

train "))

41

42 # Save the final test accuracy

43 final_test_acc.append (check_accuracy(model , loaders , type="

test"))

44

45 # Save the training accuracies to a text file

46 with open(f"final_train_acc_{n_node }.txt ", "wb") as fp:

47 pickle .dump(final_train_acc , fp)

48

49 # Save the test accuracies to a text file

50 with open(f"final_test_acc_{n_node }.txt ", "wb") as fp:

51 pickle .dump(final_test_acc , fp)

Listing 5.26
Running Multiple Experiments.

In order to align our focus on the loss instead of accuracy and observe where
the interpolating threshold occurs, we will use one to minus off the accuracy
to derive the misclassification rate and round it off to three decimals. This
is achieved via list comprehension after loading the saved training and test

Fundamentals of Deep Neural Networks 189

accuracies for different sizes of the hidden layer (see the code listing below).
This allows us to observe the changes in training and test misclassification
rates in the y-axis as the model complexity increases in the x-axis. In addition
to plotting the two misclassification rate curves, we also draw the interpolating
threshold by detecting the first occurrence of zero value in the train variable
via the index method.

1 import matplotlib .pyplot as plt

2 import numpy as np

3

4 # Load the saved training accuracies from the file

5 with open(" final_train_acc_4096 .txt ", "rb") as fp:

6 train = pickle .load(fp)

7

8 # Load the saved test accuracies from the file

9 with open(" final_test_acc_4096.txt ", "rb") as fp:

10 test = pickle .load(fp)

11

12 # Convert accuracy to misclassification rate and perform rounding

13 train = [np.around (1 - i, 3) for i in train]

14 test = [np.around (1 - i, 3) for i in test]

15

16 # Define the x-axis values corresponding to the number of nodes

17 x_axis = range (len (num_nodes))

18

19 # Plot the misclassification rate for the training set

20 plt .plot(x_axis , train , label="train")

21

22 # Plot the misclassification rate for the test set

23 plt .plot(x_axis , test , label="test", ls="--")

24

25 # Add labels for the x-axis ticks

26 plt .xticks (x_axis , num_nodes)

27

28 # Detect the first occurrence of zero misclassification and add a

vertical line

29 plt .axvline (x=x_axis [train.index (0)], ls="--")

30

31 # Annotate the interpolation threshold

32 plt .text(

33 x_axis [train.index (0)] - 0.2,

34 0.1,

35 " Interpolation threshold ",

36 fontsize =10,

37 color ="gray",

38 rotation =90,

39 rotation_mode="anchor ",

40)

41

42 # Add labels to the axes

43 plt .xlabel ("# hidden nodes ")

44 plt .ylabel ("Misclassification rate")

45

46 # Add a legend to the plot

47 plt .legend ()

48

190 Deep Learning Generalization

FIGURE 5.17
The misclassification curves for both training and test sets as a function of the
number of nodes in the hidden layer. Both curves exhibit a decreasing trend
even if the model continues to become more complex, which corresponds to the
modern generalization theory. In particular, when the model starts to perfectly
interpolate the training data with 256 hidden nodes, the misclassification rate
for the test set keeps decreasing with a larger hidden layer in size.

49 # Display the plot

50 plt .show()

Listing 5.27
Analyzing Model Performance.

Running the codes above will produce Figure 5.17. Recall that each point
represents the final training or test misclassification rate upon completing
the 500 epochs of the training procedure. The misclassification rate curves
could thus be considered a reflection of the model’s performance upon conver-
gence. Both training and test curves exhibit a uniform decreasing trend, with
the model reaching 100% training accuracy and perfectly interpolating the
training data when there are 256 nodes in the hidden layer. Interestingly, the
test misclassification rate decreases even beyond the interpolating threshold,
which is counterintuitive based on the classical generalization theory and an
excellent example of the modern generalization theory.

Besides, the “double-descent” curve is immediately obvious, and this
could be due to the increasing gap between different model complexities so
that the second descent is obscured. Another possibility is that the implicit

Fundamentals of Deep Neural Networks 191

regularization effect of the SGD optimization algorithm is strong enough to al-
leviate the “double-descent” phenomenon. Proper regularization can hide the
“double-descent” phenomenon and accelerate learning toward a generalizing
model.

5.4.1 Multiple global minima

We have observed so far that the solutions (i.e., the model weights upon
convergence) returned by training the model using SGD exhibit good general-
ization performance in the test set, and in general, there are multiple solutions
with such equally good performance. In other words, there are multiple equally
good local minima in the loss surface, and using SGD tends to land in these
solutions that display good generalization behavior. However, when we are
not using SGD, the model may converge to a bad solution for the same model
configuration, largely due to the lack of the implicit regularization effect.

Let us analyze this specific attribute in detail. Figure 5.18 shows two dif-
ferent types of local (and potentially global) minima based on the training
loss curve: the sharp valley and the flat basin. The sharp valley is where the
best solution lies. It is the global minimum, although the figure shows that
this solution is located in a narrow valley and is thus sensitive. When training
neural networks to reach this region, the training procedure needs to be del-
icate enough to reach the bottom of the valley. In comparison, the multiple
local minima living in the flat basin area on the right are much less sensitive
to the location of the weights within that area, where the error changes slowly.

These two distinct error profiles are commonly encountered in many deep
learning problems. The overall recommendation is to train models that reach
the flat area with many equally good local minima or basins of attraction.
These models tend to be more regularized and generalize better to the un-
seen test set (see Figure 5.19). Despite a similar error in the training set, as
represented by a zero misclassification rate, the corresponding test error may
vary depending on the specific solution zone. Specifically, a wide and flat area
has a lower test error than the one obtained in the sharp zone. One particular
approach brought up recently is stochastic weight averaging, proposed by [15],
which averages a few “sharp” solution weights to arrive at a final “flat” solu-
tion within the basin zone. This technique belongs to ensemble learning, where
multiple models are averaged (in terms of model weights) to generate the final
prediction. We will cover a specific ensembling technique called bootstrap in
a later chapter in the book series on regularization via data.

5.4.2 Best versus worst minimum

We have learned so far that, regarding the solution space (model weights
upon convergence), there are multiple equally good local minima (in terms
of training error) when the model is trained to interpolate the training data
given a fixed model complexity and across different levels of model complexity.

192 Deep Learning Generalization

FIGURE 5.18
Illustrating the two types of local or potentially global minima. On the left
shows a sharp valley where the error curve changes drastically upon reaching
the bottom of the valley. On the right shows a set of equally good global
minima along a flat basin where the error changes slowly.

Out of these many equally good solutions, some tend to generalize well to the
test set, for example, via implicit regularization when using SGD. Some tend
to generalize poorly due to overfitting. Suppose we were to characterize the
solution space of local minima for a fixed level of model complexity. In that
case, we can obtain an upper bound (i.e., worst global minimum) and a lower
bound (i.e., best global minimum). The upper bound would be the subject
of study under the classical generalization theory that highlights a high test
error due to overfitting. On the other hand, the lower bound reflects the best
model that can be achieved via implicit or explicit regularization.

Let us look at this perspective more closely. Figure 5.20 illustrates the
upper and lower bounds of the test error as a function of the model com-
plexity, plus the training error as a reference. The training error decreases as
the model becomes complex under both classical and modern generalization
views. However, the behaviors differ in the test error. The test error obtained
under the classical generalization theory forms the upper bound of all possible
test errors for a given level of model complexity due to overfitting. The in-
creasing test error shows the importance of regularizing the (effective) model
complexity to control for the excessive sensitivity during model fitting. The
lower bound is the empirically observed best global minimum across different

Fundamentals of Deep Neural Networks 193

FIGURE 5.19
Good and bad solution zones in the training and test error curves. There are
multiple solutions where the weights can interpolate the training data and
produce zero misclassification rate. However, solutions living within the wide
and flat region tend to better generalize to the test set as represented by a
lower misclassification rate.

levels of model complexity. We can obtain the lower bound using implicit reg-
ularization (i.e., SGD), explicit regularization (i.e., penalizing the norm of the
weights), or both.

Besides, we also notice that the gap between the upper and lower bounds
of the possible test errors increases as the model becomes complex. This shows
that the estimation error tends to get large as the model class becomes more
complex, which leads to a bigger hypothesis space.

When the model is less complex and small in size, we will obtain a unique
or very similar local minimum in the test error as the model is trained to
minimize the training error. However, the gap increases between the best
and worst minimum as the model becomes flexible and complex. It is thus
essential to apply proper regularization for large and complex models such as
deep neural networks to obtain the best possible minimum and generalize well
to the future unseen test set.

194 Deep Learning Generalization

FIGURE 5.20
The worst and best minimum across different levels of model complexity. The
upper bound is the worst local or global minima obtained under classical
generalization theory when no regularization mechanism is used. The lower
bound serves as the best obtainable local or global minima under the modern
generalization theory. The gap between the upper bound and the lower bound
increases as the model becomes complex, showing an increase in the estimation
error.

5.5 Summary

This chapter provides an in-depth introduction to deep neural networks, start-
ing with the fundamental principles behind function approximation. It ex-
plains how adding features and controlling architectural complexity enable a
model to better approximate an underlying function, echoing the intuition
from polynomial approximations. We mentioned the universal approximation
theorem, which states that, given sufficient width and properly chosen weights,
neural networks can approximate any continuous function on a compact do-
main. This sets the stage for a deeper dive into how networks, starting from
simple perceptrons, evolve into complex architectures capable of modeling
highly nonlinear relationships.

The discussion then shifts to MLPs, emphasizing the role of activation
functions like the ReLU in introducing nonlinearity. Detailed examples illus-
trate how stacking perceptrons transform a linear model into one that can
approximate complex functions through the composition of linear transfor-
mations and nonlinear activations. A comparison between shallow and deep
networks highlights that while shallow networks increase expressivity linearly

Fundamentals of Deep Neural Networks 195

with additional nodes, deep networks can achieve exponential growth in ex-
pressivity through additional layers. This difference is exemplified by the “saw-
tooth” network model, which demonstrates how increasing depth can yield a
dramatic increase in the number of linear segments that a network can repre-
sent.

We further explore the mechanics of training these networks by introducing
automatic differentiation and gradient-based optimization, covering how the
chain rule is employed during backpropagation to compute gradients across
multiple layers. We also compare forward and backward modes of matrix
multiplication in terms of computational cost and memory efficiency. These
concepts are crucial for understanding how modern deep learning frameworks,
such as PyTorch, enable efficient training of complex models through SGD and
related optimization algorithms.

We also describe the process of training a CNN on the MNIST dataset.
This section walks through the stages of data preparation, model definition,
cost function formulation (using CEL), and optimization. Code examples
illustrate the complete training loop, from downloading the dataset and visu-
alizing samples to defining the CNN architecture and evaluating model perfor-
mance. The section demonstrates how high accuracy can be achieved through
iterative training.

Finally, we add more insight into generalization in deep neural networks.
We show that, despite perfectly interpolating the training data, the model
continues to improve its performance on unseen data when increasing its com-
plexity. By comparing sharp and flat minima, we highlight that flat regions
in the loss landscape tend to generalize better, underscoring the importance
of both model architecture design and training strategy in achieving robust
performance.

6

A Concluding Perspective

Deep learning has emerged as a transformative suite of tools in the field of
machine learning and artificial intelligence, enabling significant breakthroughs
in a variety of complex predictive tasks. From achieving superhuman perfor-
mance in image recognition to mastering games like Go and enabling sophis-
ticated natural language understanding, deep neural networks have demon-
strated strong approximation capability to learn intricate patterns from large
datasets. This success is largely attributed to their capacity to model high-
dimensional and nonlinear relationships, where multiple layers of abstraction
can be applied to facilitate rich and effective learning.

Despite these practical achievements, the theoretical understanding of why
deep learning generalizes so well remains a subject of intense research and
debate. As discussed earlier on the modern perspective of generalization, one
of the most perplexing and fundamental questions is how and why deep neural
networks, whose number of parameters often vastly exceeds the number of
training samples, generalize effectively to new, unseen data in many cases.
This is counterintuitive from the classical perspective of statistical learning
theory, which suggests that models with such high capacity tend to overfit
the training data and learn the noise rather than the signal, thus performing
poorly on future unseen samples.

The generalization paradox observed in many deep learning tasks chal-
lenges the traditional notions of bias-variance trade-off and model capacity. It
seems that classical theories, which can be based on concepts like the Vapnik-
Chervonenkis (VC) dimension and Rademacher complexity, fail to provide
satisfactory explanations for the empirical success of overparameterized neu-
ral networks. These complex models can often perfectly fit training data (also
called perfect interpolation), even when labels are randomized, yet exhibit
strong generalization performance on real-world tasks.

In this chapter, we aim to summarize the theoretical underpinnings of
generalization in deep learning that we have covered so far. We will explore
the historical foundations that laid the groundwork for understanding neural
networks, including their expressivity and trainability. By examining key the-
oretical results, such as the Universal Approximation Theorem, and analyzing
the optimization landscapes of neural networks, we will build a foundation for
discussing the mechanisms that may explain generalization in modern deep
learning. We will also highlight the main theoretical contributions and outline
the open challenges that continue to motivate research in this area.

DOI: 10.1201/9781003511601-6 196

https://doi.org/10.1201/9781003511601-6

A Concluding Perspective 197

6.1 Early Theoretical Foundations

The theoretical study of neural networks has its roots in the quest to un-
derstand their ability to approximate complex functions and the dynamics
of their training processes. Two primary pillars underpin this foundational
work: expressivity, which describes the capacity of neural networks to rep-
resent a wide class of functions, and trainability, which denotes the ability
to effectively optimize neural networks and obtain good parameter estimates,
despite their non-convex loss landscapes. Essentially, the former refers to the
approximation error of the specified hypothesis class, and the latter refers to
the estimation error.

6.1.1 Expressivity of neural networks

The expressivity, or representational capacity, of neural networks refers to
their ability to approximate complex functions drawn from a given function
class. Understanding expressivity is crucial because it sets the stage for what
neural networks can, in principle, learn given sufficient data and appropriate
training algorithms. As we have shown in Chapter 5, the practical realization
of this capacity involves intricate trade-offs between the depth and width of
a neural network. For example, deeper networks can represent functions with
exponentially more linear regions than shallow ones, thus leading to more
efficient approximations of highly nonlinear mappings.

Let us review the universal approximation theorem in more detail.

6.1.1.1 The universal approximation theorem

One of the cornerstone results in neural network theory is the Universal Ap-
proximation Theorem, which asserts that a feedforward neural network with
a single hidden layer can approximate any continuous function on a compact
subset of Rn to any desired degree of accuracy, provided that the network
has enough hidden units and uses a suitable activation function. This result
is formalized in the following theorem.

Theorem (Cybenko, 1989; Hornik, Stinchcombe, and White,
1989): Let σ : R → R be a continuous, non-constant activation function.
For any continuous function f : K → R defined on a compact set K ⊂ R

n,
and for any ε > 0, there exists an integer M and real constants ai ∈ R

n,
bi ∈ R, and ci ∈ R for i = 1, 2, . . . ,M , such that the neural network function:

NM (x) =
M∑

i=1

ci σ(a
⊤
i x+ bi)

satisfies:
sup
x∈K
|f(x)−NM (x)| < ε.

198 Deep Learning Generalization

The proof of this theorem relies on the density of neural network function
spaces in the space of continuous functions on compact sets. A key element of
the argument is the Stone-Weierstrass Theorem, which says that any algebra
of functions that contains the constants and separates points is dense in the
space of continuous functions C(K). Here, the algebra consists of functions of
the form σ(a⊤x+b), which are closed under addition and scalar multiplication.
These functions separate points in the domain K because, for any two distinct
points x, y ∈ K, there exists a choice of a and b such that σ(a⊤x + b) 6=
σ(a⊤y+b). And, by the Stone-Weierstrass Theorem, a finite linear combination
of these functions can approximate any continuous function on K, up to an
arbitrary degree of accuracy.

The theorem holds for a variety of activation functions, including the sig-
moid function σ(z) = 1

1+e−z and the hyperbolic tangent function σ(z) =
tanh(z). In particular, the Rectified Linear Unit (ReLU) activation function,
σ(z) = max(0, z), which is widely used in modern neural networks, can also
satisfy the conditions of the theorem with appropriate modifications. These
results demonstrate the versatility and power of neural networks as universal
approximators.

While the Universal Approximation Theorem is profound in its implica-
tions, it is important to recognize its limitations. First, the theorem is non-
constructive, meaning it guarantees the existence of parameters ai, bi, and ci
but does not provide a method for finding these optimal parameters. More-
over, it does not specify how many nodes M in the hidden layer are needed
to achieve a given approximation error ε. Additionally, the theorem applies
only to continuous functions defined on compact sets, and its extension to
unbounded domains requires additional considerations.

As an example, consider the example of approximating a continuous func-
tion f : [0, 1]→ R. As covered in Chapter 3, polynomials are flexible functions
that can be used to approximate an arbitrarily shaped function. This observa-
tion has also been formalized in the Weierstrass Approximation Theorem, in
that f can be uniformly approximated by polynomial functions. Since neural
networks can use polynomial functions as activation functions to represent
polynomials, one might conjecture that such networks can approximate f .
However, polynomial activation functions do not satisfy the requirements of
the Universal Approximation Theorem. If the activation function is a poly-
nomial, then any neural network built will itself be a polynomial function,
due to the compositions of affine transformations and polynomial functions
happening in the middle layers.

In contrast, when using non-polynomial activation functions (such as sig-
moid, tanh, or ReLU), the network is capable of generating a much richer and
more flexible class of functions, allowing it to approximate any continuous
function arbitrarily well. This non-polynomial condition is essential to ensure
that the network’s representational capacity is sufficient to capture the com-
plexity of arbitrary continuous functions, which is why polynomial activations

A Concluding Perspective 199

are excluded from the standard formulation of the Universal Approximation
Theorem.

For example, when using a sigmoidal activation function such as σ(z) =
1

1+e−z , we can construct a neural network:

NM (x) =

M∑

i=1

ci σ(kix+ bi),

where ki and bi are parameters that control the shape and position of each
sigmoid. When these parameters are carefully trained and optimized, the net-
work can approximate f to any desired precision.

The theorem also motivates constructive approximation techniques for spe-
cific classes of functions. For example, we know that Fourier series can approx-
imate periodic functions that display regular patterns such as seasonality, and
neural networks can approximate these series by tuning the parameters to
mimic sinusoidal components. Similarly, wavelet decompositions offer a ba-
sis for localized function approximation, which neural networks can learn to
capture localized features of complex functions.

Extensions of the Universal Approximation Theorem to deep networks also
reveal additional insights. For example, deep neural networks with ReLU ac-
tivations are also universal approximators, but their efficiency in representing
certain functions increases with depth. Indeed, as we have shown earlier, func-
tions that require exponentially many neurons in a shallow network can be
represented with polynomially many neurons in a deep network. These re-
sults demonstrate the expressive power of depth in modern neural network
architectures.

In summary, the Universal Approximation Theorem establishes the the-
oretical foundation for the representational capacity of neural networks. It
ensures that, given sufficient capacity and appropriate activation functions,
neural networks can approximate any continuous function on a compact do-
main. However, practical considerations such as optimization, generalization,
and computational efficiency remain critical areas of research in terms of both
theory and practice.

6.1.1.2 Tradeoff between depth and width

While the Universal Approximation Theorem establishes the capability of neu-
ral networks to approximate any continuous function, it does not address ad-
ditional questions such as the efficiency or rate of approximation, nor does it
consider how the architecture’s depth and width affect this efficiency. Subse-
quent research has focused on quantifying the approximation error in terms
of the network size (number of neurons) and depth (number of layers), aiming
to better understand the trade-offs between these architectural parameters,
often called hyperparameters.

Barron (1993) advanced the theoretical understanding by providing quanti-
tative bounds on the approximation error of feedforward neural networks with

200 Deep Learning Generalization

sigmoidal activation functions. He demonstrated that, for certain classes of
functions, the approximation error decreases at a rate of O(1/

√
M), where M

is the number of hidden units in the network. This result offers a more precise
characterization of how the network size affects its approximation capabilities.
This result is formalized as follows.

Theorem (Barron, 1993): Let f be a function defined on [0, 1]n such

that its Fourier transform f̂(ω) satisfies:
∫

Rn

‖ω‖1 |f̂(ω)| dω <∞.

Then, for any M ∈ N, there exists a neural network NM (x) with one hidden
layer and M hidden units using sigmoidal activation functions such that:

‖f −NM‖L2([0,1]n) ≤
C√
M

,

where C is a constant depending only on f but not on M .
Barron’s theorem establishes that the approximation error in the L2 norm

decreases inversely with the square root of the number of hidden units, pro-
vided that f has finite first moment of its Fourier transform weighted by
‖ω‖1. The condition on f̂(ω) implies that f belongs to a class of functions
with bounded variation and certain smoothness properties, which means it
should not be too wiggly in shape. This result provides a quantitative rate
at which the approximation error decreases with the number of hidden units.
The O(1/

√
M) rate indicates that increasing the number of neurons leads to a

predictable improvement in the approximation accuracy. This contrasts with
the Universal Approximation Theorem and provides a quantitative measure
on the approximation rate as the neural network becomes more complex (more
hidden nodes).

Barron’s bounds also suggest that modern neural networks can mitigate
the curse of dimensionality for certain function classes by proper architec-
tural design. Although traditional approximation methods may require expo-
nentially many parameters in high dimensions, neural networks can achieve
acceptable approximation errors with a polynomial number of neurons when
designing the neural network to be deep rather than wide, since the depth
(number of layers) of a neural network plays a crucial role in its expressive
power. Indeed, recent studies have demonstrated that deep networks can rep-
resent certain functions exponentially more efficiently than shallow networks,
highlighting the importance of depth in neural network architectures.

We introduce one such representative work proposed by Telgarsky (2016)
in the recent literature.

Theorem (Telgarsky, 2016): For any L ∈ N, there exists a function
fL : [0, 1]→ [0, 1] that can be computed by a ReLU network of depth L with
a constant width (independent of L), such that:

• The function fL oscillates 2L times over the interval [0, 1].

A Concluding Perspective 201

• Any ReLU network of depth less than L that approximates fL within a
constant error ε < 1/2 requires a width at least proportional to 2L.

This theorem demonstrates that certain functions can be efficiently repre-
sented by deep networks but not by shallow ones unless the shallow networks
have exponentially many neurons.

Note that the constructed function fL is designed to perform hierarchical
computation, where each additional layer in the network captures increasingly
finer details. Specifically, fL can be thought of as a sawtooth function (covered
in Chapter 5) with an exponential number of oscillations, which naturally
aligns with the compositional structure of deep networks. This result suggests
that depth contributes fundamentally to a network’s expressive power. We
can also say that deep networks can represent functions that are empirically
intractable for shallow networks of practical size, which further indicates that
certain tasks inherently benefit from deeper architectures.

In addition, the results emphasize a trade-off between depth and width. Al-
though increasing the number of layers can exponentially reduce the required
number of neurons for specific functions, deeper networks may be more chal-
lenging to train due to issues like vanishing or exploding gradients, echoing the
concept of increasing estimation error for a larger hypothesis class, as covered
in Chapter 2. In contrast, shallow networks may require impractically large
widths to achieve the same approximation power.

These findings also inform network design in practical applications. For
tasks where the target function exhibits a hierarchical or compositional struc-
ture, deep networks are more suitable. Examples include image recognition
and natural language processing, where features are naturally organized in
layers of abstraction.

The exploration of approximation rates and depth-width trade-offs in neu-
ral networks also connects to classical approximation theory. In polynomial
approximation, for instance, the degree of the polynomial plays a role similar
to the depth of a neural network. In particular, higher-degree polynomials can
approximate more complex functions, and deeper networks can capture more
intricate patterns. These studies extend the understanding of the expressive
capabilities of neural networks beyond the mere universal approximation. By
quantifying the architectural considerations (number of neurons and layers)
required to achieve a certain level of approximation accuracy, they offer a
more nuanced perspective on the learning capacity of a neural network.

6.1.2 Trainability and optimization landscapes

Beyond the functional expressivity that determines the approximation error,
the practical success of neural networks also depends critically on the ability
to train them effectively, which concerns the estimation error. For deep neural
networks, this involves navigating the high-dimensional and often non-convex
optimization landscapes defined by their loss functions. The training process

202 Deep Learning Generalization

seeks to find parameter values that minimize a predefined loss function L(θ),
where θ represents all the network parameters, including weights and biases
across all layers.

Note that the loss functions associated with neural networks are typically
non-convex with respect to the parameters θ. As discussed earlier, such non-
convexity introduces several optimization challenges:

• Firstly, the presence of multiple local minima can complicate the opti-
mization process. In a non-convex landscape, there may be multiple min-
ima that are locally optimal but not globally optimal. Gradient-based
optimization algorithms, such as SGD, are likely to converge to these
local minima, potentially resulting in suboptimal performance.

• Secondly, saddle points pose a significant obstacle. A saddle point is a
critical point where the gradient vanishes, but the associated Hessian
matrix has both positive and negative eigenvalues, indicating directions
of both ascent and descent. In high-dimensional parameter spaces, saddle
points are more prevalent than local minima (see more details in Dauphin
et al. [2014]). Gradient descent algorithms can thus be easily trapped in
flat regions near saddle points, leading to slow convergence or stagnation
during the optimization process.

• Thirdly, the optimization landscape may contain plateaus and flat re-
gions where the gradient is small in magnitude over nearby regions of
the parameter space. These areas can cause gradient-based methods to
make minimal progress, thus prolonging the training process and making
it sensitive to hyperparameter choices like the learning rate.

Despite these theoretical challenges, neural networks are trained success-
fully in practice using variants of SGD. This raises the question: why do these
algorithms work effectively despite the non-convexity of the loss landscape?

6.1.2.1 Insights into loss surface geometry

Researchers have investigated the geometric properties of the loss surfaces of
neural networks to understand the empirical success of gradient-based opti-
mization. Two significant contributions in this area are the loss surface analysis
by Choromanska et al. and the study of properties of deep linear networks by
Kawaguchi.

Choromanska et al. drew analogies between the loss surfaces of deep neural
networks and the energy landscapes of spin glasses, which are disordered mag-
netic systems studied in statistical physics. The key idea is that the complexity
of the loss landscape can be analyzed using probabilistic methods inspired by
spin glass theory. In spin glasses, the energy landscape is characterized by
a multitude of local minima separated by energy barriers. Similarly, the loss
surface of a neural network can be thought of as a high-dimensional surface
with numerous local minima corresponding to different configurations of the
network parameters.

A Concluding Perspective 203

To facilitate analysis, Choromanska et al. considered a simplified model of
neural networks where the weights are assumed to be random variables with
certain statistical properties. By applying results from the spin glass theory,
they developed the following insights into the distribution of local minima:

• High-Dimensional Concentration: In high-dimensional parameter spaces,
random projection theory and the concentration of measure phenomenon
imply that the values of the loss function at different local minima are
highly concentrated around their mean. This means that most local min-
ima have loss values close to the global minimum, and reaching any of
these equally good local minima would satisfy the termination condition
of an optimization procedure.

• Value of Local Minima: The expected loss at a local minimum is only
slightly worse than the loss at the global minimum. Mathematically, if
Lmin denotes the global minimum loss and Llocal denotes the loss at a
local minimum, then:

E[Llocal] ≈ Lmin + δ

where δ is a small value that decreases with the size of the network. This
means that the resulting model, which identifies any of the equally good
local minima, will not be too far away from the global minimum in terms
of the loss value.

• Connectivity of Minima: There exist paths in the parameter space that
connect different local minima without traversing regions of high loss.
This suggests that the loss surface may have a connected structure, al-
lowing optimization algorithms to move between minima efficiently. This
is the path that might possibly take us to another local minimum without
a bumpy ride.

These findings imply that, in large-scale neural networks, the majority of
local minima are nearly as good as the global minimum in terms of training
loss. Consequently, gradient-based methods are likely to find acceptable solu-
tions that generalize well, even if they do not reach the exact location of the
global minimum.

6.1.2.2 Properties of deep linear networks

Although real-world neural networks are nonlinear due to the use of activation
functions such as ReLU or sigmoid, studying deep linear networks still provides
valuable theoretical insights. A deep linear network is a neural network where
all activation functions are linear, identity mappings. The function computed
by such a network with L layers can be expressed as:

f(x; θ) = W (L)W (L−1) · · ·W (1)x,

where W (l) denotes the weight matrix of layer l.

204 Deep Learning Generalization

Kawaguchi analyzed the optimization landscape of deep linear networks
under the squared loss function:

L(θ) =
1

2

N∑

i=1

‖yi − f(xi; θ)‖2 ,

where {(xi, yi)}Ni=1 are the training samples.
The key results from their analysis are:

• All Local Minima are Global Minima: Every local minimum of the loss
function L(θ) corresponds to a global minimum. That is, if θ∗ is a local
minimum, then L(θ∗) = Lmin.

• All Non-Global Critical Points are Saddle Points: Any critical point θ
that is not a global minimum is a saddle point. This means that in any
non-minimal critical point, there exists at least one direction in parameter
space along which the loss function can decrease.

These findings suggest that in deep linear networks, optimization algo-
rithms are not hindered by poor local minima, as all local minima are globally
optimal, and identifying any of these local minima will suffice. This simpli-
fies the optimization landscape compared to general non-convex functions. In
addition, the presence of saddle points explains why optimization can still be
challenging. Algorithms can become trapped in saddle regions where gradients
are small, leading to slow convergence.

While real neural networks are nonlinear, the insights from linear net-
works suggest that the optimization landscapes of deep networks may be more
friendly than traditionally feared. Empirical studies have observed similar phe-
nomena in nonlinear networks, supporting this perspective.

6.1.2.3 Why optimization works in practice

Combining the insights from [4] and [8], we can better understand why
gradient-based optimization methods like SGD are effective for training deep
neural networks. We can summarize these findings into the following four
perspectives:

• High-Dimensional Geometry Aids Optimization: In high-dimensional pa-
rameter spaces, the concentration of measure and the abundance of near-
global minima increase the likelihood that random initialization of weights
followed by gradient descent will lead to good solutions.

• Stochasticity Helps Escape Saddles: The stochastic nature of SGD, due to
mini-batch sampling, injects noise into the parameter updates. This noise
can help the algorithm escape saddle points by perturbing the parameters
in random directions.

A Concluding Perspective 205

• Effective Learning Rates: Adaptive learning rate methods (e.g., Adam,
RMSprop) adjust the step size based on gradient magnitudes, which can
improve convergence near saddle points and in flat regions. In practice,
practitioners often use Adam to identify a good region as a starting model
and then switch to SGD for further improvement.

• Regularization Effects of Over-parameterization:Over-parameterized net-
works (with more parameters than training samples) have redundant de-
grees of freedom, which may facilitate finding flat minima that generalize
well.

Current research on trainability and optimization landscapes reveals that,
despite the non-convexity of neural network loss functions, certain proper-
ties of these functions in high-dimensional spaces make them amenable to
optimization via gradient-based methods. The analogy to spin glass models
provides a theoretical framework for understanding the distribution of local
minima, while the analysis of deep linear networks offers concrete results about
the absence of poor local minima and the nature of saddle points.

These theoretical insights help explain the empirical success of training
deep neural networks and lay the groundwork for further research into opti-
mization algorithms and network architectures. These will be helpful perspec-
tives to improve training efficiency and generalization performance of deep
neural networks.

6.2 The Paradox of Generalization

Despite our discussion on the expressive power and trainability of deep neu-
ral networks, a fundamental question still remains unanswered: Why do these
highly overparameterized models generalize well to unseen data? This phe-
nomenon is often referred to as the paradox of generalization in deep learning
and the associated double-descent phenomenon. Classical statistical learning
theory, which relies on concepts such as the VC dimension and Rademacher
complexity, predicts that models with a capacity far exceeding the number
of training samples should overfit the data and exhibit poor generalization
performance. However, empirical evidence contradicts this prediction, as deep
neural networks often achieve a low generalization error even when they are
capable of perfectly fitting random labels.

6.2.1 Empirical observations of over-parameterization

Zhang et al. conducted a series of experiments demonstrating that deep neural
networks can achieve zero training error on datasets with randomly assigned
labels. Specifically, let D = {(xi, yi)}Ni=1 be a dataset where xi ∈ R

d are

206 Deep Learning Generalization

input features and yi ∈ Y are labels drawn independently from a random
distribution over the label space Y. A neural network fθ : R

d → Y with
parameters θ can be trained to minimize the empirical risk of the training set:

R̂(θ) =
1

N

N∑

i=1

ℓ(fθ(xi), yi),

where ℓ : Y × Y → R+ is a loss function (e.g., cross-entropy loss). Despite
the randomness of the labels, the network can achieve zero training error with
R̂(θ) = 0, indicating perfect interpolation of the training data.

However, when trained on real datasets with true labels, the same networks
not only achieve low training error but also exhibit low test error on unseen
data. This dichotomy suggests that the capacity of neural networks alone does
not fully explain their generalization behavior.

6.2.2 Limitations of classical capacity measures

Classical learning theory uses capacity measures such as the VC dimension
and Rademacher complexity to provide upper bounds on the generalization
error, which quantifies the true risk of a given classifier fθ and is typically
unobserved as the underlying data-generating process P is unavailable. For a
hypothesis class H and a loss function ℓ, the generalization error R(θ) of a
model fθ ∈ H is defined as:

R(θ) = E(x,y)∼P [ℓ(fθ(x), y)],

where P is the underlying data distribution. The goal of learning is thus to
bound the generalization gap between R(θ) and R̂(θ), where the latter is
calculated using the training set and is referred to as the empirical risk.

6.2.2.1 VC dimension

As a recap of Chapter 2, the VC dimension VC(H) is a measure of the capacity
of the hypothesis class H. It is defined as the largest integer h such that there
exists a set of h points that can be shattered by H. A set is shattered if,
for every possible assignment of labels to the points, there exists a particular
hypothesis (a model) in H that perfectly classifies these points to the correct
labels.

For binary classification with 0-1 loss, classical bounds state that, with
probability at least 1− δ:

R(θ) ≤ R̂(θ) +

√

VC(H)(ln(2N/VC(H)) + 1)− ln(δ/4)

N
,

where N is the number of training samples.
In deep neural networks, the VC dimension can be very large. For exam-

ple, for a network with W parameters and threshold (binary step) activation

A Concluding Perspective 207

functions, the VC dimension satisfies:

VC(H) = O(W lnW).

When W ≫ N , the bound becomes vacuous, thus providing no useful
information about the generalization behavior of the neural network.

6.2.2.2 Rademacher complexity

The empirical Rademacher complexity R̂N (H) of a hypothesis class H is an-
other capacity measure defined as:

R̂N (H) = Eσ

[

sup
h∈H

1

N

N∑

i=1

σih(xi)

]

,

where σi are independent Rademacher variables that take values ±1 with
equal probability. The Rademacher complexity thus measures how well the
class H can fit random noise.

For models with high capacity, such as deep neural networks with many
parameters, the Rademacher complexity can be large, leading to loose gener-
alization bounds. Specifically, the generalization error can be bounded by:

R(θ) ≤ R̂(θ) + 2R̂N(H) + 3

√

ln(2/δ)

2N
.

Again, when R̂N (H) is large, the bound may not be informative.

6.2.3 Explaining the paradox

The failure of classical capacity measures to characterize the generalization
behavior of deep neural networks has led researchers to explore alternative
explanations, such as using implicit regularization, neural tangent kernel, and
the double-descent phenomenon, among other ongoing directions. Let us re-
view these perspectives in more detail.

6.2.3.1 Implicit regularization

One hypothesis is that the training algorithm itself could impose an implicit
regularization effect that biases the solution toward models that tend to gen-
eralize well. For example, SGD preferentially looks for solutions with certain
properties (e.g., minimal norm or smoothness) that are not directly captured
if we directly minimize the empirical loss of the training set and search for the
optimal model in the hypothesis class.

Consider linear regression with minimum ℓ2 norm of the prediction error.
Given an underdetermined system Xw = y, where X ∈ R

N×d with N < d,
the minimum-norm solution is given by:

w∗ = X⊤(XX⊤)−1y.

208 Deep Learning Generalization

Gradient descent initialized at w = 0 could still converge to w∗, even
though there are infinitely many solutions that fit the data perfectly. This
suggests that the optimization dynamics can be selected among multiple in-
terpolating solutions in a way that affects the generalization behavior of the
trained model.

6.2.3.2 Neural tangent kernel (NTK) perspective

The NTK framework, as discussed in Jacot et al. (2018), models the training
dynamics of neural networks in a limiting paradigm of infinite width. In this
regime, the network behaves like a kernel method with a specific kernel de-
termined by the prespecified network architecture and initialization method.
The NTK remains constant during training, and the evolution of the output
function ft(x) follows linear dynamics:

ft(x) = f0(x)− ηΘ(x,X)(I − e−ηΘ(X,X)t)(f0(X)− y),

where η is the learning rate, Θ is the NTK, f0 is the initial network prediction,
and t denotes time.

This perspective suggests that even highly nonlinear networks can be ap-
proximated by linear models during training, and generalization can be ana-
lyzed using kernel methods. However, the NTK approach may not fully cap-
ture the behavior of finite-width networks, which is the mainstream in prac-
tical architectural design.

6.2.3.3 Double-descent phenomenon

Belkin et al. (2019) observed that the generalization error, when plotted as
a function of model capacity, can exhibit a double-descent behavior. In par-
ticular, increasing the model capacity initially leads to a lower training error
and an increased test error, following the classical overfitting regime of a U-
shaped curve. However, beyond a certain point (the interpolation threshold
at which the training error reaches zero), further increasing the capacity leads
to a decrease in the test error.

Formally, let Hα denote a hypothesis class parameterized by capacity α.
The test error R(θα) can exhibit a non-monotonic behavior as follows:

R(θα) =







Decreases for α ≤ αc,

Increases for αc < α < α∗,

Decreases for α ≥ α∗,

where αc is the “sweet spot” with the lowest test error in the classical U-shaped
curve, and α∗ is the minimal training error (the interpolation threshold), after
which the test error starts to decrease again.

This phenomenon challenges the traditional view on bias-variance trade-
off and suggests that over-parameterization can, counterintuitively, improve
the generalization performance of many overly complex models.

A Concluding Perspective 209

6.2.4 Alternative theoretical frameworks

To address the paradox of generalization, researchers have also proposed alter-
native theoretical frameworks that consider factors beyond the capacity of the
hypothesis class. These include margin-based analysis, algorithmic stability,
and compression-based approach.

6.2.4.1 Margin-based analysis

Margin theory, originally developed for support vector machines, has been
extended to neural networks. The margin of a classifier on a sample (xi, yi) is
defined as:

γi = yifθ(xi),

assuming binary labels yi ∈ {−1,+1}.
The empirical margin distribution can provide insights into the general-

ization behavior. For example, Neyshabur et al. (2015) derived generalization
bounds based on the norms of the weight matrices and the margin:

R(θ) ≤ R̂γ(θ) +O

(∏L
l=1 ‖W (l)‖F
γ
√
N

)

,

where R̂γ(θ) is the empirical margin loss, ‖W (l)‖F is the Frobenius norm of the
weight matrix at layer l, and L is the number of layers. Such bound differs from
previous ones in that the true risk is now bounded by the empirical margin
loss, plus a constant term proportional to the norm of weight matrices.

6.2.4.2 Algorithmic stability

Algorithmic stability measures how sensitive the output of a learning algo-
rithm is to changes in the training data. An algorithm is uniformly stable if,
for all datasets S and S′ differing by one sample, and for all inputs x:

|ℓ(fS(x), y) − ℓ(fS′(x), y)| ≤ β,

where fS and fS′ are the models trained on S and S′, respectively.
Hardt et al. (2016) showed that SGD has algorithmic stability properties

that can be used to bound the generalization error:

E[R(θ) − R̂(θ)] ≤ β.

This suggests that the learning dynamics, when using SGD to optimize
model parameters, contribute to generalization by limiting the model’s sensi-
tivity to individual training samples.

6.2.4.3 Compression-based approaches

Compression schemes attempt to explain generalization by showing that a
trained network can be compressed to a smaller network or a simpler rep-
resentation without significant loss in performance. The idea is that if the

210 Deep Learning Generalization

learned function can be described succinctly, then it effectively belongs to a
smaller hypothesis class with a lower capacity.

In particular, Arora et al. (2018) developed a compression-based general-
ization bound:

R(θ) ≤ R̂(θ) +O

(
log(size of compressed model)

N

)

.

This approach essentially connects generalization to the information-
theoretic complexity of the learned model.

6.3 Open Questions and Future Directions

Despite significant advances in understanding the expressivity and trainability
of deep neural networks, the paradox of generalization remains only partially
understood. In this section, we introduce a few key open questions that con-
tinue to challenge researchers and outline potential directions for future work.

6.3.1 Role of data distribution

One of the critical aspects influencing generalization is the nature of the un-
derlying data distribution. Real-world data often possess inherent structures,
such as low-dimensional manifolds embedded in high-dimensional spaces, spar-
sity (only a few features are significant out of many), or hierarchical patterns
(high-level features are composed of low-level features). Understanding how
these properties contribute to generalization is a vital open question.

For example, the manifold hypothesis posits that high-dimensional data lie
approximately on a manifold of much lower dimensionality. Mathematically,
let M ⊂ R

D be a manifold of dimension d ≪ D, and data samples xi ∈
M. Neural networks can exploit this low-dimensional structure to generalize
effectively.

Analyzing generalization in the context of the manifold hypothesis involves
studying how neural networks interpolate between data points on the manifold
and how they extrapolate off the manifold. Techniques from differential geom-
etry and manifold learning could provide theoretical frameworks to quantify
the impact of data geometry on generalization.

Traditional capacity measures, such as those mentioned previously, often
do not account for the underlying distribution of the data. Developing data-
dependent complexity measures, such as covering numbers or mutual informa-
tion between inputs and outputs, can lead to tighter generalization bounds.

For example, suppose that the data distribution PX has support on a set
with covering number N (ε) at scale ε. Generalization bounds can be refined

A Concluding Perspective 211

to:

R(θ) ≤ R̂(θ) +O

(√

lnN (ε)

N

)

,

where N is the number of training samples. Understanding how properties
such as intrinsic dimension, clustering, and margin distribution influence the
covering number N (ε) is an open area of research.

We outline three potential directions for future research related to the
underlying data-generating process:

• Developing theories that incorporate data geometry and structure into
generalization analyses.

• Investigating how data augmentation and transformations affect the ef-
fective data distribution and generalization.

• Studying generalization in settings with non-IID data, such as time series
or adversarial environments.

6.3.2 Implicit bias of optimization algorithms

The optimization algorithm used to train neural networks plays a crucial role
in determining which solution is found among the many that fit the training
data. The implicit bias or implicit regularization of algorithms like SGD may
guide the search toward solutions with favorable generalization properties.

For example, in linear models, it is well understood that gradient descent
converges to the minimum norm solution. For example, in linear regression,
gradient descent initialized at zero converges to the solution:

w∗ = argmin
w
‖w‖2 subject to Xw = y.

This phenomenon suggests that gradient descent implicitly regularizes the
search by favoring solutions with smaller norms.

However, directly extending these results to deep, nonlinear networks is
challenging. Recent theoretical work attempts to characterize the implicit
bias of gradient-based optimization in deep learning. For example, Soudry
et al. showed that for linearly separable data and logistic regression, gradi-
ent descent converges in direction to the maximum-margin separator. In deep
networks, researchers have proposed that SGD biases the network toward so-
lutions with certain norm constraints or low complexity.

Mathematically, suppose that we define a complexity measure Ω(θ) (e.g.,
weight norms). The implicit bias hypothesis suggests that SGD solves:

θ∗ = argmin
θ

Ω(θ) subject to R̂(θ) = 0.

Understanding what Ω(θ) represents in deep networks and how it affects
generalization still remains an open question.

212 Deep Learning Generalization

In general, analyzing the stochastic dynamics of SGD, including the effects
of learning rate, batch size, and momentum, can shed light on the implicit bias.
Some future directions of research include:

• Studying the stationary distribution of SGD and its relation to flat min-
ima.

• Exploring connections between SGD dynamics and Bayesian inference,
where SGD approximates sampling from a posterior distribution.

• Developing theoretical models that capture the implicit bias of optimiza-
tion algorithms in deep networks.

• Investigating how different optimization hyperparameters influence the
bias and generalization.

• Extending implicit bias analyses to other optimization methods, such as
adaptive algorithms (e.g., Adam, RMSprop).

6.3.3 Bridging theory and practice

There is often a gap between theoretical models and practical observations in
deep learning. Bridging this gap is essential for developing theories that can
guide the design of better model architectures and optimization algorithms.

There are quite some phenomena that are observed but not fully explained
by current theories. A few examples include:

• The effectiveness of specific architectures (e.g., ResNets, Transformers).

• The impact of training techniques such as dropout, batch normalization,
and data augmentation.

• The role of hyperparameters in training stability and generalization.

One future direction of research on this front is to create benchmarks and
standardized datasets for theoretical investigation. Potential research direc-
tions also extend to:

• High-Dimensional Probability: Techniques for analyzing random pro-
cesses in high-dimensional spaces.

• Non-Convex Optimization: Advances in understanding global conver-
gence properties in non-convex settings based on frameworks such as
Bayesian optimization Liu (2023).

• Information Theory: Applying information-theoretic concepts to quantify
generalization and compression.

• Statistical Physics: Utilizing analogies with physical systems to model
learning dynamics and loss landscapes.

A Concluding Perspective 213

6.4 Summary

In this chapter, we explored the foundational theories and contemporary chal-
lenges associated with understanding generalization in deep learning. The re-
markable empirical success of deep neural networks in various complex tasks
has prompted a deeper investigation into the theoretical principles that un-
derpin their performance, particularly concerning their ability to generalize
from training data to unseen test samples.

We began by examining the expressivity of neural networks, highlighting
the Universal Approximation Theorem, which says that feedforward networks
with a single hidden layer can approximate any continuous function on a
compact subset of R

n, given sufficient capacity. This theorem underscores
the potential of neural networks to model complex functions but leaves open
questions about the efficiency of approximation and the practical limitations
in terms of network size and computational resources.

We then introduced approximation rates and the trade-offs between depth
and width in network architectures. For example, Barron’s approximation
bounds provided quantitative insights into how the approximation error de-
creases with the number of neurons, while Telgarsky’s results emphasized the
exponential advantages that a deep neural network can excel in representing
certain functions. These findings inform the design of neural networks by illus-
trating how depth and width contribute differently to a network’s expressive
power.

The chapter also addressed the trainability of neural networks by explor-
ing the optimization landscapes associated with training deep models. Despite
the non-convexity of the loss functions, which theoretically could hinder opti-
mization due to multiple local minima and saddle points, empirical evidence
shows that gradient-based methods like SGD are effective. We discussed the
spin glass analogy and the properties of deep linear networks to understand
why, in high-dimensional parameter spaces, most local minima are nearly as
good as the global minimum, and saddle points rather than poor local minima
pose the primary challenge.

Central to our discussion was the paradox of generalization. Classical sta-
tistical learning theories, relying on capacity measures such as the VC dimen-
sion and Rademacher complexity, seemingly fail to explain why overparam-
eterized neural networks generalize well. These theories predict that models
with capacity exceeding the number of training samples should overfit, yet
deep networks deviate from this expectation. We discussed empirical observa-
tions that demonstrate the fact that neural networks can perfectly fit random
labels but still generalize effectively on real data.

To address this paradox, we explored alternative theoretical frameworks:

• Implicit Regularization: The idea that the optimization algorithms them-
selves introduce a bias toward solutions that generalize well, even in the
absence of explicit regularization terms.

214 Deep Learning Generalization

• Neural Tangent Kernel (NTK): A perspective where, in the infinite-width
limit, neural networks behave like kernel methods, allowing for the appli-
cation of kernel theory to analyze training dynamics and generalization.

• Double-Descent Phenomenon: An observed behavior where increasing
model capacity beyond a certain point leads to improved generalization,
challenging the traditional bias-variance trade-off.

Finally, we identified open questions and future directions that remain at
the forefront of research on generalization in deep learning models:

• Understanding the role of data distribution, including how real-world data
structures like low-dimensional manifolds impact generalization.

• Deciphering the implicit bias of optimization algorithms and howmethods
like SGD influence the selection of solutions in the parameter space.

• Investigating the conditions under which over-parameterization benefits
generalization and how it relates to the geometry of the loss landscape.

• Bridging the gap between theory and practice by developing theoretical
models that accurately map to empirical observations in deep learning.

Addressing these questions necessitates a multidisciplinary approach, com-
bining theoretical innovation with empirical validation, and may involve the
development of new mathematical tools capable of capturing the complexities
inherent in modern neural networks.

Building upon the theoretical foundations and open questions presented
in this volume, Volume II (Next volume of the book (to be written next
year)) of this book will dive into an in-depth exploration of regularization in
deep learning. Regularization is a crucial aspect of training neural networks,
aimed at improving generalization performance by preventing overfitting to
the training data. Specifically, we will cover commonly used regularization
techniques through four primary lenses: data, objective/cost function, model
hyperparameter configuration, and optimization algorithm. Throughout Vol-
ume II, we will integrate theoretical analyses with practical implementations,
providing insights into why these regularization techniques work and how they
can be effectively applied in various deep learning contexts. By systematically
examining regularization from these multiple perspectives, we aim to equip
readers with a comprehensive understanding of the strategies that contribute
to building models that not only fit the training data well but also generalize
effectively to new, unseen scenarios.

Thank you for taking the time to read this book up to this point. I look
forward to seeing you again in Volume II!

Bibliography

[1] S. Arora, R. Ge, B. Neyshabur, and Y. Zhang. Stronger generalization
bounds for deep nets via a compression approach. In J. Dy and A. Krause,
editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages
254–263, Stockholmsmässan, Stockholm, Sweden, Jul 10–15 2018.

[2] A. R. Barron. Universal approximation bounds for superpositions of a sig-
moidal function. IEEE Transactions on Information Theory, 39(3):930–
945, 1993.

[3] M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern machine-
learning practice and the classical bias variance trade-off. Proceedings of
the National Academy of Sciences, 116(32):15849–15854, 2019.

[4] A. Choromanska, M. Henaff, M. Mathieu, G. Ben Arous, and Y. LeCun.
The loss surfaces of multilayer networks. In G. Lebanon and S. V. N.
Vishwanathan, editors, Proceedings of the Eighteenth International Con-
ference on Artificial Intelligence and Statistics, volume 38 of Proceedings
of Machine Learning Research, pages 192–204, San Diego, CA, USA, May
9–12 2015. PMLR.

[5] Y. N. Dauphin, R. Pascanu, Gülçehre, K. Cho, S. Ganguli, and Y. Bengio.
Identifying and attacking the saddle point problem in high-dimensional
non-convex optimization. arXiv preprint arXiv:1406.2572, 2014.

[6] M. Hardt, B. Recht, and Y. Singer. Train faster, generalize better: Stabil-
ity of stochastic gradient descent. In M.-F. Balcan and K. Q. Weinberger,
editors, Proceedings of the 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learning Research, pages
1225–1234, New York, NY, USA, June 20–22 2016. PMLR.

[7] A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence
and generalization in neural networks. In Advances in Neural Information
Processing Systems, 31:8571–8580, 2018.

[8] K. Kawaguchi. Deep learning without poor local minima. In Advances
in Neural Information Processing Systems, 29:586–594, 2016.

[9] P. Liu. Bayesian Optimization: Theory and Practice Using Python.
Apress, 2023.

215

216 Bibliography

[10] B. Neyshabur, R. Tomioka, and N. Srebro. Norm-based capacity control
in neural networks. In P. Graz, U. von Luxburg, and R. Garnett, edi-
tors, Proceedings of the 28th Annual Conference on Learning Theory, vol-
ume 40 of Proceedings of Machine Learning Research, pages 1376–1401,
Paris, France, July 3–6 2015. PMLR.

[11] D. Soudry, E. Hoffer, M. S. Nacson, S. Gunasekar, and N. Srebro. The im-
plicit bias of gradient descent on separable data. The Journal of Machine
Learning Research, 19(1):2822–2878, 2018.

[12] M. Telgarsky. Benefits of depth in neural networks. In V. Feldman,
A. Rakhlin, and O. Shamir, editors, Proceedings of the 29th Annual
Conference on Learning Theory, volume 49 of Proceedings of Machine
Learning Research, pages 1517–1539, Columbia University, New York,
NY, USA, June 23–26 2016. PMLR.

[13] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Under-
standing deep learning requires rethinking generalization. arXiv preprint
arXiv:1611.03530, 2017.

[14] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz
Barak, and Ilya Sutskever (2000). Deep suble descent: Where bigger
models and more data hurt. In ICLR 2020, https://dblp.org/rec/bib/
journals/corr/abs-1912-02292

[15] Samuel L. Smith, and Benoit Dherin, and David G. T. Barrett (2021).
On the origin of implicit regularization in stochastic gradient descent.
Accepted at ICLR 2021. https://arxiv.org/abs/2101.12176

https://dblp.org/rec/bib/journals/corr/abs-1912-02292
https://arxiv.org/abs/2101.12176
https://dblp.org/rec/bib/journals/corr/abs-1912-02292

Index

A
Activation functions, 152–155,

197–198
Adam (optimizer), 105, 170, 212
Approximation error, 41–45, 197
Automatic differentiation, 162–169

B
Backpropagation, 154, 165, 167–169,

170, 173, 183, 195
Batch gradient descent, 100
Batch normalization, 212
Batch size, 162, 172, 212
Bayes classifier, 38–39, 42, 43, 47, 48,

69
Bayesian optimization, 1, 26, 212
Bayes risk, 32, 38, 39, 40, 47
Benign overfitting, 118, 205
Bias, 12–14
Bias trick, 83–85, 115
Bias-variance trade-off, 12–15, 33–34
Bootstrap, 75, 111–113
Bootstrap aggregation (bagging), 127

C
Capacity measures, 51–68
Chain rule, 164–166, 195
Chernoff bound, 52
Compact set, 197, 198, 213
Compression-based approaches,

209–210
Concept drift, 37
Confidence term (in generalization

bounds), 67
Consistency (in statistical learning),

39–41, 43
Convolutional neural networks

(CNN), 169–185

Covariate shift, 37
Covering numbers, 53, 55, 210
Critical regime (in double-descent),

129–130
Cross-entropy loss, 29, 31, 170,

179–182, 195, 206
Cross-validation, 79, 81
Curse of dimensionality, 8, 27, 200

D
Data augmentation, 4–5, 23, 24, 25,

27, 75, 211, 212
Deep neural networks, 1, 151–195
Double-descent phenomenon, 1, 15,

27, 121–123, 208, 214
Dropout, 3, 8, 24, 25, 27, 212

E
Early stopping, 3, 8, 27
Effective Model Complexity (EMC),

128–130, 150
Empirical Risk Minimization (ERM),

16, 28, 46–48, 68, 69, 70
Ensemble learning, 191
Estimation-approximation trade-off,

41–45, 69
Estimation error, 42–45, 194, 197,

201, 213
Expressivity of neural networks,

197–201, 213

F
Feature engineering, 106–107, 112,

114, 116
Flat minima, 191–193, 212, 213
Forward propagation, 165, 170
Forward mode (automatic

differentiation), 166–168

217

218 Index

Fourier series, 199
Function approximation, 151, 194,

197

G
Generalization, 1, 4, 29, 31
Generalization bounds, 51, 61–62,

64, 66, 67–68, 69, 209, 210
Generalization gap, 7, 10, 11, 20, 29,

206
Generalization paradox, 1, 196,

205–209, 213
Ghost sample, 51, 53–55
Global minima, 191, 203, 204, 205
Gradient descent, 88, 92–105

H
Hessian matrix, 90, 202
Hidden layers, 26, 152, 159, 161, 194
High-dimensional probability, 212
Hoeffding’s inequality, 47, 57
Hyperparameter tuning, 25–26, 33,

79, 81
Hypothesis space (F), 36, 40–43, 45,

46, 48–69

I
Implicit regularization, 1, 16, 24–25,

27, 205, 207, 211, 213–214
Inductive bias, 71, 72, 115, 127, 131
Information theory, 212
Interpolation, 118, 124, 126, 133,

190, 196, 205, 208, 210
Interpolation threshold, 121, 122,

123, 126, 127, 128, 129, 131,
132, 144, 190, 208, 214

Irreducible error, 12, 33, 34, 109,
110, 111, 117

K
k-nearest neighbors, 5
Kernel size (in CNN), 175, 177
Kernel size (in SVM), 26

L
L1 regularization (Lasso), 19, 25, 27,

66, 123, 128

L2 regularization (Ridge), 3, 8, 25,
27, 33, 41, 66, 123, 128,
136, 137

Law of Large Numbers (LLN),
46–47, 52

Learning rate (η), 26, 93, 95, 97, 98,
101, 102–105, 116, 162, 182,
188, 212

Linear regression, 6, 8, 27, 70–116
Linearity in the weights, 108
Local minima, 89, 90, 93, 100, 101,

191, 202, 203, 204, 213
Logits, 38, 177
Loss functions, 30, 37–39, 73, 85–88
Loss landscapes, 194, 201–205, 212,

213

M
Manifold hypothesis, 210
Margin-based analysis, 209
Mini-batch gradient descent, 100
Minimum norm solution, 127, 207,

211
Misclassification rate, 189, 190,

193
Model selection, 42, 45, 65, 66, 79,

113, 120, 121, 126, 150
Multilayer perceptron (MLP),

152–159, 164, 194

N
Neural Tangent Kernel (NTK), 1,

208, 214
Non-convexity, 31, 89, 90, 93, 202,

205, 212, 213
Non-parametric models, 83, 131
Normal Equation, 73, 89, 90, 91, 116,

136, 137, 138, 139, 140

O
Occam’s razor, 7, 127
Optimization algorithms, 1, 23, 73,

88–105
Optimization landscapes, 201–205,

213

Index 219

Over-parameterization, 1, 8, 15, 27,
113, 118, 121, 123, 124, 125,
126, 127, 128, 129, 130, 131,
132, 147, 149, 150, 151, 196,
205, 207, 208, 214

Overfitting, 1, 3, 4, 6, 7, 8, 10–11, 12,
13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 25, 26, 27,
30, 31, 32, 33, 40, 41, 42,
43, 47, 53, 56, 60, 65, 68,
69, 78, 79, 81, 106, 113, 114,
115, 116, 118, 119, 120, 121,
123, 126, 128, 129, 131, 133,
134, 135, 140, 144, 147, 149,
150, 196, 205, 207, 213, 214

P
Parametric models, 83
Perceptron, 151–154, 194
Polynomial feature engineering,

106–107, 114
Polynomial regression, 106–108, 114,

132–147, 149
Pooling layers, 176
Prediction function, 72, 82, 84, 133,

163, 174, 183
Probabilistic framework (in SLT),

35–37

R
Rademacher complexity, 55, 65–67,

68, 196, 206
Rademacher variables, 55, 65
Random forest, 19
Rectified Linear Unit (ReLU), 152,

154, 157, 159, 176, 198
Regularization, 3, 13, 24–25, 27–28
Residuals, 86, 87, 88, 91, 94, 98
RMSprop (optimizer), 105, 212
Roughness penalty, 135, 136, 137,

138, 139, 142, 147, 150

S
Saddle points, 90, 93, 202, 203, 204,

213

Sample non-monotonicity, 132,
147–149, 150

Scaling law, 128–131
Selection bias, 79, 81
Shattering, 55, 63
Shattering coefficient, 55–61, 63, 64,

65, 67, 68, 69
Smoothing splines, 113, 133–147,

149, 150
Softmax function, 177–178, 182
Sparse learning, 9, 19, 27, 60, 210
Stationarity, 37
Statistical Learning Theory (SLT), 1,

29–69
Statistical physics, 212
Stochastic gradient descent (SGD),

16, 24, 27, 101–102, 127,
131, 162, 182, 186, 191, 205,
207, 209, 211–212

Stone-Weierstrass Theorem, 198
Structural Risk Minimization

(SRM), 29, 33, 45, 47, 68
Sum of Squared Errors (SSE), 86, 87,

107, 116
Supervised learning, 29, 35, 37, 46,

70, 72, 74, 75, 115, 116
Support vector machine (SVM), 26,

209
Symmetrization, 51, 53–55, 69
Symmetrization Lemma, 54–55

T
Trainability of neural networks, 197,

201–205, 213
Training process, 22–24
Train-test split, 78–79, 80, 115
Transfer learning, 72
Transformers, 212

U
Underfitting, 1, 2, 3, 6, 7, 10, 11, 12,

13, 14, 17, 21, 22, 26, 27,
30, 32, 33, 43, 45, 68, 69,
106, 111, 113, 114, 115, 119,
120, 121, 129, 147, 149

220 Index

Uniform convergence, 40–41, 48–51,
52, 53, 56, 57, 58, 59, 60,
61, 68, 69

Uniform Law of Large Numbers
(ULLN), 48–51, 69

Universal Approximation Theorem,
151, 197–199, 213

V
Validation set, 78, 79, 81, 106
Variance, 12–15

VC dimension, 41, 48, 55, 63–65, 67,
68, 69, 196, 206

W
Wavelet decompositions, 199

Z
Zero training error, 7, 17, 21, 22, 28,

113, 118, 124, 125, 126, 127,
128, 129, 190, 205, 206, 211

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Contents
	1. Unveiling Generalization in Deep Learning
	1.1. Introducing Generalization
	1.2. The Curse of Dimensionality
	1.3. More on Underfitting and Overfitting
	1.4. Understanding Bias-Variance Trade-off
	1.5. More on the Model Training Path
	1.6. Understanding the Model Training Process
	1.7. An Overview of Different Regularization Techniques
	1.8. Toward Model Generalization via Hyperparameter Tuning
	1.9. Summary

	2. Introduction to Statistical Learning Theory
	2.1. Introducing Generalization
	2.1.1. Revisiting underfitting and overfitting
	2.1.2. Revisiting bias-variance tradeoff

	2.2. Statistical Learning Theory
	2.2.1. A probabilistic framework
	2.2.2. Loss functions in supervised learning
	2.2.3. Consistency in STL
	2.2.4. Estimation–approximation trade-off
	2.2.5. Empirical risk minimization
	2.2.6. Uniform convergence

	2.3. Capacity Measures of Functional Class
	2.3.1. Union bound for finite function classes
	2.3.2. Extending beyond finite function classes
	2.3.3. Shattering coefficient
	2.3.4. Different function classes
	2.3.5. Generalization bounds
	2.3.6. VC dimension
	2.3.7. Rademacher complexity
	2.3.8. Other generalization bounds and capacity concepts

	2.4. Summary

	3. Classical Perspectives on Generalization
	3.1. The Goal of Machine-Learning Models
	3.1.1. Revisiting the model training workflow

	3.2. The Data
	3.2.1. Sampling from the underlying data distribution
	3.2.2. The train-test split
	3.2.3. Selection bias and cross-validation

	3.3. The Model
	3.3.1. Parametric versus non-parametric models
	3.3.2. The bias trick

	3.4. The Cost Function
	3.5. The Optimization Algorithm
	3.5.1. Multiple minima and convexity
	3.5.2. The gradient descent algorithm
	3.5.3. Different types of gradient descent
	3.5.4. The stochastic gradient descent algorithm
	3.5.5. The impact of the learning rate

	3.6. Improving Predictive Performance
	3.6.1. Polynomial feature engineering
	3.6.2. Linearity in the weights

	3.7. More on the Model
	3.7.1. Bias and variance decomposition
	3.7.2. Understanding bias and variance using bootstrap
	3.7.3. Reduced generalization with high model complexity
	3.7.4. Observing increased variance by varying model complexity

	3.8. Summary

	4. Modern Perspectives on Generalization
	4.1. A Modern View on Generalization
	4.1.1. Beyond perfect interpolation
	4.1.2. Behind the double-descent phenomenon
	4.1.3. Extending the double-descent phenomenon via the scaling law
	4.1.4. A brief history of the double-descent phenomenon

	4.2. Double Descent in Polynomial Regression
	4.2.1. The smoothing spline
	4.2.2. Rewriting the smoothing spline cost function
	4.2.3. Deriving the closed-form solution
	4.2.4. Implementing the smoothing spline model
	4.2.5. Observing goodness and roughness of fit with polynomial degrees
	4.2.6. Sample non-monotonicity in generalization performance

	4.3. Summary

	5. Fundamentals of Deep Neural Networks
	5.1. Multilayer Perceptron
	5.1.1. A two-layer neural network
	5.1.2. Shallow versus deep neural networks

	5.2. Automatic Differentiation
	5.2.1. Gradient-based optimization
	5.2.2. The chain rule with partial derivatives
	5.2.3. Different modes of multiplication

	5.3. Training a CNN on MNIST
	5.3.1. Downloading and loading the MNIST dataset
	5.3.2. Defining the prediction function
	5.3.3. Defining the cost function
	5.3.4. Defining the optimization procedure
	5.3.5. Updating model weights

	5.4. More on Generalization
	5.4.1. Multiple global minima
	5.4.2. Best versus worst minimum

	5.5. Summary

	6. A Concluding Perspective
	6.1. Early Theoretical Foundations
	6.1.1. Expressivity of neural networks
	6.1.2. Trainability and optimization landscapes

	6.2. The Paradox of Generalization
	6.2.1. Empirical observations of over-parameterization
	6.2.2. Limitations of classical capacity measures
	6.2.3. Explaining the paradox
	6.2.4. Alternative theoretical frameworks

	6.3. Open Questions and Future Directions
	6.3.1. Role of data distribution
	6.3.2. Implicit bias of optimization algorithms
	6.3.3. Bridging theory and practice

	6.4. Summary

	Bibliography
	Index

